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A theory of nonstandard inner product spaces is developed using methods of 
nonstandard analysis. Various results concerning nonstandard operators and 
their spectra are proved. The theory is applied to construct nonstandard Fock 
spaces which extend the standard Fock spaces. Moreover, a rigorous framework 
for the field operators of quantum field theory is presented. The results are 
illustrated for the case of Klein-Gordon fields. 

1. INTRODUCTION 

Although quantum field theory based on Fock space has attained 
various numerical and theoretical successes, its lack of mathematical rigor 
can lead to inconsistencies. This lack of rigor also inhibits our deep 
understanding of the theory and may possibly produce an impediment to 
further progress. Standard Fock space quantum field theory contains 
certain mathematically ill-defined concepts which must be remedied to 
make it rigorous. The most important of these are delta functions and 
other "generalized functions," "unnormalizable" plane waves, and the 
manipulation of infinities. We do not advocate removing these concepts, 
since we would lose the predictive and numerical power of the theory. 
However, we do advocate that these concepts be retained in a rigorous 
reformulation. 

In this paper, we shall extend the standard Fock space to a nonstan- 
dard space that is large enough to contain the "generalized functions" and 
also allows one to manipulate infinities algebraically in a rigorous fashion. 
The construction of the enlarged Fock space relies on the theory of 
nonstandard analysis. Our main intention is to develop the properties of a 
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nonstandard Fock space and the corresponding nonstandard field opera- 
tors. We have not yet developed a theory of interacting fields, but we shall 
illustrate our results for the case of free Klein-Gordon fields. The frame- 
work that we shall present has formal similarities to the standard theory. 
This is as it should be, since we do not want to lose the power of standard 
quantum field theory. 

We are not the first to apply nonstandard analysis to the problems of 
quantum theory. There is already a considerable amount of literature 
devoted to this subject (Albeverio et al., 1986; Farrukh, 1975; Francis, 
1981; Kelemen and Robinson, 1972; Nakamuro, 1991; Thurber and Katz, 
1974; Todorov, 1985). However, most previous investigations have applied 
the nonstandard theory to obtain results about the standard universe. In 
this work we contend that the nonstandard universe has physical signifi- 
cance in its own right. For example, we propose that the states and 
observables of nonstandard Fock space have physical content. 

This paper is organized as follows. Since the reader may not be familiar 
with nonstandard analysis, we present a simplified overview in Section 2. 
This section stresses only the concepts of nonstandard analysis that will be 
needed for the sequel. Section 3 develops the theory of hyper-inner product 
spaces and operators on such spaces. Emphasis is placed on the boundedness 
and spectral properties of these operators. Section 4 specializes the work in 
Section 3 to investigate internal inner product spaces and internal operators. 
Nonrelativistic nonstandard Fock spaces are constructed in Section 5 and 
their corresponding field operators are developed in Section 6. Second 
quantization of operators and its relationship to field operators are discussed 
in Section 7. A relativistic nonstandard Fock space is constructed in Section 
8 and the theory is illustrated for Klein-Gordon fields. 

2. NONSTANDARD ANALYSIS 

This section briefly reviews the theory of nonstandard analysis 
(Davis, 1977; Hurd and Loeb, 1985; Manchover and Hirschfeld, 1969; 
Robinson, 1966; Strogan and Luxemburg, 1976). Our presentation follows 
Lindstrom (1988) fairly closely and employs the ultrapower construction 
for our nonstandard model. Although the transfer principle is one of the 
basic tools of nonstandard analysis, we shall not use it, for two reasons. 
First, the transfer principle relies fairly heavily on the machinery of logic. 
Second, although this principle is quite powerful, its abstraction hides the 
constructive and analytic properties of the model. We begin by construct- 
ing the nonstandard complex field *C. 

Let l~ be the set of nonnegative integers and let 2 ~ be the power set of 
1~. Let m be a nonatomic, 0-1, finitely additive measure on 2 n. That is, m 



Nonstandard Fock Spaces 867 

is a mapping m: 2N~  {0, 1} satisfying: 

(1) m({a}) = 0  for every a~N.  
(2) m([~) = 1. 
(3) m(A uB) = re(A) + m(B) for every A, B~2 n with A c~B = 0. 

It follows that m vanishes on every finite set and is unity on every 
cofinite set. There is a natural one-to-one correspondence between such 
measures and free ultrafilters on 2 n. A simple Zorn's lemma argument 
implies the existence of free ultrafilters on 2 ~ and hence such measures 
must exist. Although m is not unique, it is irrelevant which m we choose 
and we shall work with one fixed m in the sequel. 

The following lemma summarizes the properties of  m that we shall 
need. These properties are well known and the simple proofs are omitted. 
We denote the complement of a set A by A'. 

Lemma 2.1. For every A, B~2 n, we have: 

(a) m(A) = 1 or m(A') = 1 (but not both). 
(b) If  A _~ B, then m(A) <- m(B). 
(c) If m(A) = m(B) = 1, then m(A c~ B) = 1. 

Let s = C N be the set of  all complex-valued sequences. For  (a,), (bn) ~s we 
define (an) ~ (b,) if 

m ( n ~ :  an =bn} = 1 

in which case we write a n = b ,  a.e. It is easy to show that ~ is an 
equivalence relation. For  example, to prove transitivity, suppose (an) ~ (bn) 
and (bn) ~ (en). Let 

A = { n ~ N : a , = b n }  

B = { n ~ : b n = e , }  

C= {n~I~:an =cn} 

Then m(A)=m(B)=l ,  so by Lemma 2.1(c), m ( A n B ) = l .  Since 
A n B _  C, applying Lemma 2.1(b), we have re(C) = 1. Hence, (an) "" (cn). 

We define the hypercomplex numbers *C by *C = s/,... Denoting the 
equivalence class containing (an) by [an], we have 

*C = {[a,]: (an) ~s} 

As in the above proof  of  transitivity, if (an)~(bn)  and an~R a.e., then 
bneR a.e. We define the hyperreals *R by 

*R = {[a, le*C:  a,,~R a.e.} 
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and our previous observation shows that *R is well-defined. Moreover, 
*R ~ *C. We define addition and multiplication on *C by 

[a.] + lb.] = [a. + b.] 

[a.][b.] = [a.b.] 

and order on *~ by 

[a.] < [b.] if a. < b. a.e. 

As in our previous proof  of transitivity, it is easy to show that these are 
well-defined. For a c C, we define the sequence (~) by ti. = a for all n c/~. 
The zero and unit of *C are defined as 0 = [0] and 1 = [1], respectively. 

Theorem 2.2. *C is a field and *R ~ *C is an ordered subfield. 

Proof. There are many straightforward verifications to be made and 
we shall demonstrate two of them. To show the existence of inverses, 
suppose [a.] r 0. Letting A = {n c/~: an ~ 0}, we have m(A) = 1. For  n cA, 
let b. = 1/a. and for n cA' ,  let b. = 0. Then 

[a.][b.] = [a.b.] = [T] = 1 

To show dichotomy of  order on *~, let [a .] , [b.]c*R. Let A = 
{ncN:a. <b.}. If  m(A) = 1, then a. < b .  a.e,, so [a.] < [b.]. If  m(A) = 0 ,  
then by Lemma 2.1(a), m(A')= 1. Since A'={ncN:b .  < a . } ,  we have 
b. < a. a.e., so [b.] < [an]. Similar proofs apply to the other properties. �9 

The injection a ~ [~] imbeds R into *R and C into *C. It is straightfor- 
ward to show that this mapping is a field isomorphism from C onto its 
range and an ordered field isomorphism from ~ onto its range. Hence, by 
identification, we can and will assume that R ~ *R and C _  *C. We call 
elements of C standard and elements of *C\C nonstandard. 

For [a , ]c*C we define the modulus [[a,]l=[la,[  ]. This mapping is 
well-defined and has the usual properties of a modulus. In a similar way, 
we define the complex conjugate [a,]* = [a*] and again this operation has 
the usual properties. We also define the real and imaginary parts in the 
traditional way. An element x c * C  is infinitesimal if Ixl < e  for every 
e c R  + = {acR: a > 0}. An element x c * C  isfinite if Ix[ < a for some a c R  +. 
If  x c * C  is not finite, it is infinite. 

Notice that 0 is the only standard infinitesimal. The element 61 = 
[1/(n + 1)] is infinitesimal since for every e c R +, the set 

A = {noN: 1/(n + 1) <5} 

contains all but a finite number of n's so m(A)= 1. Since 6~ > 0, 6~ is 
a nonstandard infinitesimal. Also, 62=[1/(n + 1) 2] is infinitesimal and 
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0 < 62 < 61 . Moreover,  In] and [n 2] are infinite. These examples show that 
*R and *C are proper field extensions of  • and C, respectively. Moreover,  
since *R is an ordered field (and *C is a field), infinite numbers can be 
algebraically manipulated and compared. The proof  of  the next theorem is 
essentially that given in Hurd and Loeb (1985) and Lindstr~m (1988). 

Theorem 2.3. Any finite x e*C can be uniquely represented as a sum 
x = a + e, where a E C  and e is infinitesimal. 

For  x, ye*C, if x - y  is infinitesimal, we write x ~ y  and say that x 
and y are close. It is easy to show that ~ is an equivalence relation. For  
any finite x e * C ,  the unique a ~ C  such that x ~ a is the standard part of  x 
and is denoted a = ~ or a = st(x). We consider st as a mapping from the 
set of  finite elements Fin(*C) of *C onto C. It is easy to show that st 
preserves addition and multiplication on Fin(*C) and moreover preserves 
<-- on Fin(*~).  The monad of a ~ C  is 

Mon(a) = {xE*C: x ~ a }  = {xe*C: ~ = a }  

Thus, Mon(0) is the set of  infinitesimals. 

Lemma Z4. I f  aneC and liman =a, then [an] ~ a .  

Proof. For  any ~aR +, el = { n a ~ : [ a n - a [ < ~ }  contains all but a 
finite number  of  n 's  so re(el) = 1. Hence, [[an] - a[ < ~. [] 

The converse of  Lemma 2.4 does not hold. For example, either 
[1,0, 1 , 0 , . . . ]  or [0, 1,0,  1 , . . . ]  equals 0. 

We now show how to transfer structures from C to *C. I f  el ___ *C, we 
define *A ~ *C by 

*A - [A] = {[an] e ' C :  anEA a.e.} 

The set *A is well-defined and subsets of  *C of  the form *A are standard. 
It  is clear that A ___ *A. Moreover,  it is easy to show that A = *A if and 
only if el has finite cardinality. I f  el ___C and f :  el--+C, we define 
*f: *A ~ *C by 

*f([an]) - [f]([an]) = [/(an)] 

The function *f  is well-defined and functions of  this form are standard. It 
is clear that *f  extends f .  

I f  A.  ~ C, n ~ [~, we define [A.] ~ *C by [an] ~[A.] if and only if an ~A. 
a.e. Subsets of  *C of  this form are internal. I f  An --- C andfn : An ~ C, n e I~, 
we define [fn]: [An] ~ * C  by [fn]([an])= [fn(a.)] and such functions are 
internal. It is clear that standard sets and functions are internal, while the 
converse does not hold. Sets and functions that are not internal are 
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external. An example of  an internal set that is not standard is 

[a, b] = {xe*~:  a -< x -< b} 

where a ---b, a, be*RkR.  Examples of external sets are Mon(0), ~,  R, C. 
We can transfer operations on sets and functions in C to internal sets 

and functions. For  example, let A , _  ~ be measurable sets and let 
fn :A,  ~ C be integrable functions. If  A = [A,] and f =  [f,,], we define the 
internal integral 

Lda,, J 

This integral inherits many of the standard properties. 
We now show that delta functions and other generalized functions 

are well-defined internal functions on *R. For  example, let e = [ 1/n], where 
we assume the zeroth term is 1, and define the internal function 
80: * R ~ * R  by 

80(X ) =(27~e)-1/2e-X2/2~=I(-~)1/2e-nx2/21 

If  f :  • ~ C is continuous and decreases rapidly, then 

It is well known that this sequence converges to f (0) ,  so by Lemma 2.4 we 
have 

In other words, 

f So(x)f(x) dx ,~ f(O) 

[' 
st J 80 (x)f(x_ ) dx = f(O) 

The method that we have used to define *C is called the ultrapower 
construction. This construction can be applied to any set 6:. We define *6e 
as the set of  equivalence classes of  sequences in ~ .  In an analogous way 
we have 6 0 _  *S# and we define internal sets and functions on *S: as 
before. The next theorem is called the saturation principle and its proof  can 
be found in Lindstr~m (1988). 

Theorem 2.5. Let (Ai) be a sequence of internal sets in *S~. If  
NianAi 40 for every ne • ,  then Ni~N Ai ~60. 
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It is easy to see that the family of  internal sets in .5~ is closed under 
finite Boolean operations and hence forms an algebra. Indeed, we have 

[An] ('~ [On] = [A n n Bn] 

[An] k,J [On] = [A n k.) On] 

[An]' = [A;,I 

However, this algebra is as far from being a a-algebra as it could possibly 
be. 

Corollary 2.6. If (A~) is a sequence of  internal sets in *50, then 
U i ~  Ai is internal if and only if ~J,~n Ai = U;~n A~ for some n � 9  

Proof. Sufficiency is trivial. For  necessity, suppose A = ( .Jt~ A~ is 
internal. Then A\Ai  is internal for all i � 9  and clearly (']~N (A\A~)=0.  
By the saturation principle, there exists an n �9 N such that 0 i  ~ n (A \A.)  = 0, 
so A = U i ~ n A  i. �9 

We now discuss internal measure theory. Let b ~ be a set and let 
f~ = [f~.], O. -~ Y,  be an internal subset of  "5 ~. Let d .  be a a-algebra on 
~ . ,  n �9 N. We define the internal algebra d = [ d . ]  on f~ as follows. A set 
A �9162 if and only if A = [A.] is an internal set with An � 9  a.e. As we have 
seen, ~r is indeed an algebra, but it is not a a-algebra except in trivial cases. 
Let ~ be the a-algebra generated by ~r Let #. be a measure on ~r n �9 N. 
Then # = [P.] is defined on ~r by 

#(A) = [r ) = [pn(A,)] � 9  u {oo} 

Now it is easy to check that # is finally additive on d .  Define the finitely 
additive measure ~ d ~ • u [ ~ } by 

O u(A)=S~ if #(A) is finite 
if /~(A) is finite or oo 

If A i �9 d ,  i �9 N, are mutually disjoint and U i~ m Ai �9 d ,  then by the saturation 

principle, A,. = 0 except for a finite number of  i's. Hence, ~ is a-additive on 
d .  By the Hahn extension theorem (Dunford and Schwartz, 1958; Reed and 
Simons, 1972), ~ has a a-additive extension (~ ^ to ~ (the extension is 
unique if ~ is a-finite). Let L(~r be the completion of ~ relative to (~ ^ 
and let L(#) be the completion of  (~ ^ on L ( d ) .  We call L(/0 the Loeb 
measure of/~ and (f~, L(~r L(/~)) a Loeb measure space (Hurd and Loeb, 
1985; Lindstrom, 1988). 

Let f :  t) ~ *N be internal, where f = [fn] and f ,  : f~. -~ N are #n-inte- 
grable. It is easy to check that ~ is L(~C)-measurable and L(/~)-integrable. 
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We now have two natural integrals; the internal integral 

f fd[~ ~I~ fn d#n 1 
and the .Loeb integral ~~ We say that f is finite if 
L(~)({o~ s n : f ( o )  r 0}) and supNo))l are finite. The next theorem is proved 
in Lindstrom (1988). 

Theorem 2. 7. I f f  is finite, then ~ = ~ ~ 

3. HYPER-INNER PRODUCT SPACES 

A hyper-inner product space ~ is an inner product space over the 
hypercomplex field *C. That is, g is a vector space over *C with a 
mapping ( - , -  ): g x g ~ * C  satisfying: 

(1) ( . , . )  is linear in the second argument. 
(2) ( x , y ) =  ( y , x ) *  for all x,y~2/g.  
(3) ( x , x )  >O if x v~O. 

The norm of x~ogr is IIx[I = (x,  x )  1/2. We say that x~o~  is infinitesimal 
(finite, infinite) if IIx I1 is infinitesimal (finite, infinite). Moreover, we say that 
x, y ~ o ~  are close and write x ~ y if IIx - ell is infinitesimal. An example of 
a hyper-inner product space is *C with inner product (a, b ) =  a*b. Al- 
though the proof of  the following theorem is essentially the same as in the 
standard case, we include it for completeness. 

Theorem 3.1. If x, y are vectors in a hyper-inner product space, then: 

(a) I<x,y>l _< [Ixll" Ilyll (Schwarz's inequality). 
(b)  IIx + y II <-- IIx II + [lY II (triangle inequality). 

Proof. (a) I f y  = 0, then the result is immediate, so assume that y ~ 0. 
Then for any a t * C ,  we have 

0<-IIx-ayliZ=<x-ay, x - - a y )  

= Ilxll2-a*<y, x> - a ( x ,  y )  + lal2lly II = 

Setting a = (y, x>/llY II 2, we obtain 

0 ~ Ilxll 2 - [(y' x)[2 Ily[I 2 

and the result follows. 
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(b) Applying (a), we have 

Ilx + yl12= Ilxll 2 + 2 Re(x,  y )  + Ilyl[ 2 

-< Ilxll 2 + 21<x, y>l + Ilyll 2 

-< IIx.II = + 21[x[I" Ilyll + Ilyl[ = 

= (llxll + liyll) = 
and the result follows. �9 

Another easily proved property is Ilaxll = [al" Ilxll for every a~*C, 
x e ~ .  The proof  of  the next theorem is again essentially the same as in the 
standard case and we omit it. 

Theorem 3.2. If x, y are vectors in a hyper-inner product space, then: 

(a) Ilx + Yll = + IIx - yl] = = 2llxll z + 211y? (parallelogram law). 
(b) I<x,y>l = Ilxll �9 Ilylt if and only if one of  the vectors x or y is a 

scalar multiple of the other. 

(c) [ l lx l l -  IlyJII <- Ilx - y l l -  
(d) ( x , y ) = z 2 4 = ,  ikllx + iky][2 (i = x/--~i -) (polar identity). 

We can apply the previous two theorems to obtain the following 
corollary. 

Corollary 3.3. Let x, y be vectors of a hyper-inner product space. 

(a) I f x  is finite and y is infinitesimal, then (x, y )  is infinitesimal. I f x  
and y are finite, then (x, y )  is finite. 

(b) The relation ,~ is an equivalence relation. 

(c) If  x ~ y, then [Ixll ~ Ilyll. 
(d) I f x  is finite and a ~a 'E*C,  then ax ~a ' x .  
(e) If  x and y are finite, then x + y is finite. 
(f) If  x ~ y  and z is finite, then (x,  z )  ~ (y, z ) .  

Proof. (a) This follows from Theorem 3.1(a) and the fact that a finite 
number times an infinitesimal is infinitesimal. The second statement is 
similar. 

(b) Suppose x ~ y  and y ~ z. Then from Theorem 3.1(b) we have 

IIx-zt l -< [Ix - y l l  + Ily - z l [  ~ 0  
(c) From Theorem 3.2(c) we have 

IIIxll-  Ilyl[I- Ilx - y l l  ~ 0  
(d) Since a ~ a' ,  we have 

Ilax -a'xll = [a - a ' [ ,  Ilxll ~ 0  
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(e) This follows from Theorem 3.1(b). 
(f) Applying Theorem 3.1(a) gives 

I < x , z ) - < y , z ) l = l < x - y , z ) l  <-IIx-y[l"  Ilzl[ ~ 0  [] 

If  e~*R + and xe~'f ~, we define the ball centered at x of  radius e by 

go(x) = { y e ~ :  I[Y - xll < 5} 

The set of  all balls forms a base for a topology on aft called the norm 
topology. Notice that this is a very strong topology since ~ can be 
infinitesimal. We also endow *C with this same topology. It follows from 
Theorems 3.1 and 3.2(c) that addition, scalar multiplication, the norm, and 
the inner product are continuous in the norm topology. 

In the norm topology, a hypersequence x,  eJ+f, n e* N ,  converges to 
x~oUg if for any ee*R + there exists an N e * N  such that II x .  - xll < ~ for all 
n >N .  Notice that for any ee*R + there exists an n e * N  + such that 
1/n < 5. It follows that the balls B1/,(x), n e * ~  +, xs,Cf,  form a base for the 
norm topology. Hence, convergence of hypersequences determines the 
norm topology. That is, a set A _ o~/f is closed if and only if whenever a 
hypersequence x, eA converges to an xe=/f, we have x e A .  It follows that 
a function f :  ~ ~ 5/f (or ~ ~ *C) is continuous if and only if for any 
convergent hypersequence x, ,  n~*~ ,  x n ~ x  implies f ( x n ) ~ f ( x ) .  Of 
course, the norm topology is Hausdorff. In the sequel, when we consider 
as a topological space we shall always assume this is the norm topology. 

As usual, a subspace of ~ is a nonempty subset of oug that is closed 
under addition and scalar multiplication. If  ~ ___ ~ is a subspace, then a 
mapping T: ~ ~ ~/f is linear if 

T(ax + by) = aTx + b Ty 

for every x, y e ~ ,  a, be*C.  We call a linear mapping T an operator with 
domain ~.  A subset of  ~ff is bounded if it is contained in a ball centered 
at 0. 

Theorem 3.4. If T: ~uf ~ ~ is an operator, then the following state- 
ments are equivalent. (a) T is continuous. (b) T is continuous at 0. (c) The 
set {llZxll: Ilxll-< 1} is bounded. (d) There exists an M e * R  + such that 
IITxll <-- Mllxl l  for all x e J t .  

Proof. (a)=~ (b) is trivial. Suppose (b) holds. Then there exists a 
f ie*R + such that IITyll < 1 if [ly[I <6 .  If Ilxll <-- 1, then y =6x/2  has norm 

lly II < 6, so 

IlZxll = ItZYll < 1 
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Hence, II Tx II < 2/6, so (c) holds. Suppose (c) holds. Then there exists an 
M e * R  + such that Ilzyll < M  if Ilyll -< 1. If x s 0 ,  then y--x/llxll satisfies 
[[yll -< 1. Hence, 

1 
I[x II II Zx II = II Zy II < M 

We conclude that II zxll <--MIIxll, so (d) holds. Finally, suppose (d) holds. 
If  the hypersequence xn, n eN, converges to x, we have 

I l z x .  - Zx l l  = II Z(xn - x)ll ~ M I I x .  - xll 

Now given an ~ * R  +, I I x , - x l l < ~ / M  eventually, so I I T ~ - T ~ I I < ~  
eventually. Hence, T is continuous and (a) holds. [] 

If T satisfies condition (d) of Theorem 3.4, we say that T is bounded 
and M is a bound. Thus, an operator T: ~ --* ~(f is continuous if and only 
if it is bounded. Unlike the standard case, a continuous operator need not 
have a finite bound. If L = sup{llzxll: ilxll-< 1} exists, we say that T is 
normable with norm II TII -- L. If T is normable, then T is bounded. Indeed, 
if L = Ilzli, then IITyll-< Z for all y ~ f f  with ilyll ~ 1. If x ~ 0, then 
y = x / l l x l l  satisfies IlYll -< 1, so 

IlZxll--Ilxll ' l lZYll <- Zllxll 

and T is bounded. However, if T is bounded, as we shall later see, T need 
not be normable. 

Theorem 3.5. Let T: J~f ~ ~ be an operator and let 

~ '  = {M~*~+:  llTxll-< Mllxll for all xE~ff} 

Then T is normable if and only if inf(d/) exists. Moreover, if T is 
normable, then II TII -- inf(~/g). 

Proof. If  T is normable, then, as we have just shown, IlTx[I-< 
IITI[. Ilxll for all x~A: ,  so [ITlI~Jg. Now let M~J/ / .  If IIx[I < 1, then 
]lTxII < M]]xI[ _< M. Hence, lIT u < M. Thus ][T[] is a lower bound for ~ ,  
so []TI] = inf(./g). Conversely, suppose in f ( Jg )=  N exists. As before, if 
M ~ J g  and [Ixll-< 1, then [[Tx][ < M. Hence, []Tx][ ~ N, so N is an upper 
bound for the set 

x = {llTxll= x ~ ,  IIxII -~ 1} 

Suppose No is an upper bound for X .  Then for any x # 0, II Tx/IIx II II <-No 
or [I Txll <- m IIxJl and this latter inequality also holds for x = 0. Therefore, 
N 0 ~  so N -  N 0. Hence, N = sup(JV), so T is normable. [] 



8 7 6  Gudder 

Examples of  hyper-inner product spaces may be constructed as 
follows. Let 9r be a complex inner product space and let ovg = *ovtL 
Let S : J C g x o f ~ J / f ,  P : C x ~ , ~ o C e ,  I : ~ x ~ f ~ C  be defined by 
S(x, y) = x + y, P(a, x) = ax, I(x, y) = (x ,  y ) .  Then *S, *P, *I define an 
addition, scalar multiplication, and inner product on *J{" making * •  a 
hyper-inner product space. 

We now give an example of  a bounded (and hence continuous) 
operator which does not have a finite bound and which is not normable. 
Let .jug be an infinite-dimensional Hilbert space, let x , , n ~ N ,  be an 
orthonormal set in * ~ ,  and let g = span{x,: n~N} _ * ~ .  Then g is a 
hyper-inner product space. Define T: ;of ~ r  by Tx,  = nx,,, n ~ N ,  and 
extend T by linearity. If x ~ ,  Ilxll = l, then x = ~7'=1 a,x,~, a;~*C. Since 

,_-Lixit2_- iall 2 
i = 1  

each of the ai's is finite. Hence, 

IITxll 2= ~ ]aini[ 2 
i = 1  

is finite. If M > 0  is infinite, it follows that Ilzxll < MIIxll for all xeJgf. 
Hence, T is a bounded operator. However, T has no finite bound, since for 
,,~n, IlZx, l l=nl lx ,  ll. Moreover, T is not normable. Indeed, suppose 
M0 = suP{llZxll: Ilxll < 1} exists. Then M0 cannot be infinite since M0 - 1 is 
also infinite and is a smaller bound for T. Also, as we have seen, M0 cannot 
be finite. 

The next example shows that even if an operator has a finite bound it 
may not be normable. Let ~ and T be as in the previous example, let ~ > 0 
be infinitesimal, and define T1 = eT. If  xeJCf with Ilxll = l, then writing x 
as before, each of  the a,. is finite. Hence, 

IIT, xll ==~2 ~ laini[ 2 
i = 1  

is infinitesimal. If M > 0 is not infinitesimal, we have II zlx II < MIIxll for all 
x e Jog. Hence, T~ is a bounded operator and has finite bounds. However, T~ 
is not normable. Indeed, suppose 6 = sup{llz, xll: Ilxll < 1} exists. Then 6 
must be infinitesimal, since otherwise 6/2 is a smaller bound. Suppose 6 is 
infinitesimal. Then for any n ~ N 

n8 = IIn~x. II =IIT, x. II < 6 
Hence, 2ne <6  or ne <6/2  for every n e N .  It follows that as <6/2  
for every finite a. If x e g ,  Ilxll = 1, then writing x as before, since la, I < 1, 
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we have 

Hence, 

iir, xl12=~2 ~ [a,[2lne[2 <_~z ~ in,12 
i = 1  i = 1  

IIZ, xll ---~ In,[ 2 < 
i 1 - - 2  

Thus 6/2 is a smaller bound, which is a contradiction. 
Let T be an operator  on ~ with dense domain N(T).  Let N(T*) be 

the set of  x e ~  for which there exists a y e o ~  such that (x, Tz)  = (y, z )  
for all z eN(T) .  Notice that if y exists it is unique since N(T)  is dense. For  
each such xeN(T*) ,  we define T*x =y. It is easy to show that T* is linear 
and hence is an operator with domain N(T*). We say that T is symmetric 
if (Tx, y )  = (x, Ty) for every x, yeN(T) .  Hence, if T is symmetric, then 
T* is an extension of T. We say that T is self-adjoint if T is symmetric and 
N(T)  = N(T*). Thus, T is self-adjoint if and only if T = T*. 

For an operator  T on ~f, 2 s * C  is in the resolvent set p(T) if ) , 1 -  T is 
a bijection of N(T)  onto ~ with a bounded inverse. The complement of  
p(T) is the spectrum a(T). The point spectrum up(T) is the set of  2 e*C such 
that ) , 1 -  T is not injective. Thus, 2eae(T ) if and only if there exists an 
x r 0, x e ~Vf, such that Tx = 2x. We call x an eigenvector corresponding to 
the eigenvalue ).. The continuous spectrum at(T) is the set of  2 s * C  such 
that ), Cap(T), the range r a n ( ) . / -  T) is dense in ~ ,  but 0 2 1 -  T ) -  l is not 
bounded. The residual spectrum is the set of  ). e*C such that 2 q~ap(T) and 
r a n ( ) . / -  T) is not dense. 

Theorem 3.6. (a) I f  ),ea,.(T), then for any e e * R  + there exists an 
x e N ( T )  with IIx II = 1 such that II Tx --2x II < e. (b) I f  2 ea,.(T), then there 
exists an x e N ( T )  with Ilxll = l such that Tx ~).x. 

Proof (a) Let ) , e a , . ( T )  and let e e * R  +. Since ( ) , I - T )  -1 is un- 
bounded, there exists a y e~f  ~ such that 

Letting 

I1()'1- T)-'Y[I > 1 Ilyll 

(21 - T) - l y  

x - I1(),1- T)- 'yI]  

w e  h a v e  Ilxll = 1 a n d  

IlYll 
I1()'1- r )x l l  = II()'Z- T) - IyH < e 

(b) This follows from (a) upon letting ee*N + be infinitesimal. [] 
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Theorem 3.6 generalizes a result given in Farrukh (1975). However, 
the definitions in Farrukh (1975) are incorrect. The vector in Theorem 
3.6(b) is called a (unit) ultraeigenvector corresponding to the ultraeigen- 
value 2. Of course, eigenvalues are special cases of ultraeigenvalues and 
similarly for eigenvectors. 

Corollary 3.7. For any symmetric operator T on ~ ,  we have 
ap(T) wac(T) ~_ *~. 

Proof Let 2 Sap(T) u ac(T) and suppose the imaginary part Im 2 :~ 0. 
By Theorem 3.6(a) there exists a unit vector x such that HTx-2xl[  < 
lira 4[. Since T is symmetric, we have 

(x, Tx )  = (Tx,  x )  = (x, Tx)* 

so (x, Tx)~*R.  Applying Schwarz's inequality, we have 

((x,  Tx )  - Re 4) 2 + (Im ~)2 = [(x, Tx)  - 412 = [(x, (T - 2I)x)[ 2 

< II(T - 2I)x112 < (Im 2) 2 

This gives a contradiction, so Im 2 = 0. �9 

Lemma 3.8. Let T be a symmetric operator on ~ and let x, x '  be unit 
vectors in ~(T).  If  4, 2 'e*R with 2 # 2', then 

I<x, x'>l-< Ilzx-2xll  + IITx'- 2'x'll 
ll2-2'11 

Proof. Let y = Tx - 2 x ,  y ' =  T x ' - 2 ' x ' .  Then, since 2~*~, we have 

2(x, x'> + (y, x'> = (2x + y ,  x'> = <Tx, x'> = <x, Tx'> 

= (x, y '  + 2 'x ' )  = (x, y ' )  + 2'(x, x ' )  

Therefore, 

(4 - 2') (x,  x ' )  = (x,  y '> - (y,  x ' )  

Hence, by Schwarz's inequality we have 

14 - 2'1' l( x, x ') l  -< l( x, Y')I + KY, x')[-< [ly'll + [lYl[ 

and the result follows. �9 

Theorem 3.9. Let T be a symmetric operator on ~g. (a) If x, x '  are 
eigenvectors corresponding to distinct eigenvalues 4, 2', respectively, then 
(x, x ' )  = 0. (b) If x, x '  are unit ultraeigenvectors corresponding to distinct 
ultraeigenvalues 4, 4' and if there exists an infinite ~o~*N + such that 

12 - 4'1-> o ~ ( l l z x  - 2xll + II Z x ' -  2'x'll) 
then (x, x ' )  ~ 0. 
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Proof. Part (a) follows immediately from Lemma 3.8. 
(b) By Corollary 3.7, 2, 2 ' s*R.  We then have by Lemma 3.8 that 

[<x, x ' ) l  -< 1/~o ~ o. u 

It is claimed in Farrukh (1975) that unit ultraeigenvectors for a 
self-adjoint operator corresponding to distinct ultraeigenvalues are orthog- 
onal to within an infinitesimal. This is incorrect. Indeed, suppose 2 ~ 2" are 
ultraeigenvalues with 2 .~ 2'. Let x be a unit ultraeigenvector corresponding 
to 2. Then 2x ~ 2'x, so Tx ,~ 2x ~ 2'x. Hence, x is also an ultraeigenvector 
corresponding to 2'. But (x, x )  = 1 ~ 0. An example of such a situation is 
given in the next section. However, we do have the following result. 

Corollary 3.10. Let T be a symmetric operator on ~ .  If 2, 2' are 
distinct ultraeigenvalues of T, then there exist unit ultraeigenvectors x, x '  
corresponding to 2, 2', respectively, such that (x, x ' ) .~  O. 

Proof. Let e)s*N + be an infinite number such that e)>--2/ ]2-2 '  I. 
Then by Theorem 3.6(a), there exist x , x '  with IIxl[ = IIx'll = 1 such that 
IlTx-Xxll, [ ITx ' - ,Ux ' l l  < 1/~. Now 

20) 
I,~ - ,Vl-> ~ > o~(11 Tx  - ,~xll + II r-'r - ,Vx' l [ )  

Hence, by Theorem 3.9(b) we have (x, x ' )  ~ 0. [] 

4. INTERNAL INNER PRODUCT SPACES 

Let ~ n , n ~ N ,  be complex Hilbert spaces and let S=[-L~ ~ 2~ n be their 
Cartesian product. As in Section 2, if (r (~k'n)~ S, we write (~bn) ~ (r ~,) if 
Cn = ~k~ a.e.. We define F ( ~ n ) -  F(JCgn : n~N) by 

r ( ~ n )  = s~ - = {[O.]: ( G )  ~ s }  

We define addition, scalar multiplication, and inner product on F(~ffn) by 

[r + [0;3 = [0. + O;,] 

[an][G] = [anOn] 

<[r [~,;,1 > = [<On, O ; , > ]  

It is straightforward to show that F(JF~) is now a hyper-inner product 
space. We call F ( ~ )  the internal inner product space generated by 
{ ~ n : n s N } .  [Actually, F(~n)  is an internal subspace of *egg, where 
J~f = ( ~ n ~  ~n ,  but this introduces an unnecessary complication, since 
* ~  is much too large for our purposes.] 

Let qa,, ns*N,  be an internal hypersequence in F(~,~ That is, there 
exist sequences O~scg~, i, j e N ,  such that ~n = [OT']i, where n = [ni]. We 
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define the internal sum ~n~*~ ~Fn as the internal hypersequence given by 

where m =[mi]. We write ~ , ~ . n W n = W  if the hypersequence m~--~ 
(~,~*n qJ,)(m) converges to qJ. The next result shows that we can form an 
orthonormal "basis" for F(~n)  using orthonormal bases from each of the 

~ n "  

Theorem 4.1. Let ~ = F(ggn) where ~n  is separable, n~N,  and let 
(~bJ)j be an orthonormal basis for ~ / ,  i e ~. Define the internal hyperse- 
quence W, = [~b~"]i, where n = [nil. Then Wn, n~*N, is an orthonormal set 
in ~ such that for every r  we have 

2 (ILI/n' {~))lt~/n = I~ (4.1) 
nE*l~ 

Proof. The vectors Wn are normal since 

II"I'n II= = [ll,/,~.,ll 2] = l 

To show orthogonality, suppose n, me*N,  with n :~ m. Since n~ :~mi a.e., 
we have 

Hence, Wn, n ~*[~, is an orthonormal set. Now the left side of (4.1) is the 
internal hypersequence given by 

where ,I,=[qS;]. To show convergence of (4.1), let e~*R +, where 
= [~;], e ~ R  +. Then there exists N~I~  such that m~ > Ni implies 

i~o (~'~' ~bi ) ~  - ~bi < si, i ~ 1~ 

Letting N =  [N;]e*I~I, i fm  > N, M e * N ,  we have 

( n ~ n ( W n ' c l ' ) W " ) ( m ) - r  =[y~o(~O~'~b~)~OJ-qS; ] < [ e ~ ] = e  �9 

We call ~Fn, n~*[~, of Theorem 4.1 the internal orthonormal basis 
generated by (~k~), i , j ~ .  In a similar way, we can prove Parsevars 
equality 

(w ,  ,:I:,> = y' (,-I-,, w.  >(wn, ,:t,> 
n~*l~l 
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Let T. be an operator on ~e'. with domain N ( T . ) , n e N .  Define 
@(T) = [N(T.)] and define the operator T on F(~n)  by T = IT.l, where, of 
course, [T.][~b.] = [T.•n]. We call T the internal operator generated by (Tn). 
When we say T. : ~ .  -> ~ .  is bounded, we mean the definition in the usual 
sense. 

Theorem 4.2. If  T.:  ~g. ~ ~ . ,  n ~ N, are bounded, the the internal 
operator T = [T.] on Yg = F ( ~ . )  is bounded and normable with norm 
[ll r .  Ill. Conversely, if T is bounded, then 7". is bounded for almost all n. 

Proof For x = [Xn] eYg we have 

II rx  II = [11 T.x~ Ill -< [11 Tn I1" IIx. II] = [11 T. II][ IIx~ 11] 
=[ i lTo II]llxll 

Hence, [air. II]~*u is a bound for T, so Tis  bounded. Moreover, lilT. II1 is 
an upper bound for the set J / / =  {llrxll: Ilxll -< 1}. Let M = [M. ]e*R be an 
upper bound for d// and suppose M<[l l r .  ll]. Let e = [ e . l e * N  +. Then 
there exist x. eo~., iIx. II = 1, such that IIT.x. II > liT. t l -  ~. for almost all n. 
Hence, if x = [x.], we have Ilxll = 1 and 

M -> II Tx II > [tl T. II1 - ~  

Hence, 0 < [tl 7". II1 - M < ~, which  is a contradict ion.  Thus  [11 r .  II] = 
sup(it/) and liTII = J i l l  II1. Conversely, suppose T is bounded and 7". is 
unbounded for almost all n. Then, given M . s N  +, there exist x . eo~ ,  with 
Itx.II = ] such that IIT.x. II > M .  for almost all n. Hence, for any 
Me[M, , ]e*N + there exists an x = [ x . ] s ~  with I lx l l= l  such that 
II Tx tl > M. This contradicts the boundedness of T, so 7". is bounded for 
almost all n. [] 

The following theorem has a similar proof. 

Theorem 4.3. An internal linear functional f :  J g - > * C , f = [ f . ] ,  is 
bounded if and only i f f . :  ~ . - ->C  is bounded for almost all n. 

The next result relates the resolvent set and spectrum of  an internal 
operator with those of  its generating operators, A similar theorem is 
presented in Farrukh (1975). Unfortunately, the definitions and proof  for 
this result are incorrect. 

Theorem 4.4. If T =  [7'.] is an internal operator on Jt ~ = F(jtg.), 
then (a) p(T)= [p(T.)], (b) % ( T ) =  [%(T.)], (c) ac,(T)=[a~(T.)],  (d) 
a , (T)  = [at(T.)]. 

Proof (a) Suppose 2~[p(T.)], where 2 =[2n]. Then 2 . I - T .  is a 
bijection of  ~ ( T . )  onto W. for almost all n. It easily follows that 2 1 -  T is 
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a bijection of  ~(Tn) onto J r ,  and ( 2 I - T )  -~ = [ ( 2 h i - T , ) - I ] .  Since 
( 2 h i -  T,,)- 1 is bounded for almost all n, it follows from Theorem 4.2 that 
( 2 1 -  T) -1 is bounded. Hence, 2~p(T)  and [p(Tn)] ___ p(T). Conversely, if 
2~[2~]~[p(T~)], then 2 ~ 1 -  Tn is not bijective or ( 2 h i -  T,) - l  exists but is 
unbounded for almost all n. In the first case, it follows that 21 - T is not 
bijective and in the second case, applying Theorem 4.2, we conclude that 
( ; ~ I - T )  ~ is unbounded. Hence, 2~p(T)  and the result follows. The 
proofs of (b), (c), and (d) are similar. �9 

Theorem 4.5. If  T = [T,] is an internal operator on 3/f = F(;,vf,) with 
dense domain, then T * =  [T*]. 

Proof. Since T has a dense domain, a straightforward argument shows 
that ~ ( T , )  is dense for almost every n. We now work on this set of measure 
1. Let x = [x~]~( [T*] ) .  Then there exist y ~ E ~  such that (x . ,  T.z~) = 
( y . , z . )  for all z.EN(T.).  Letting y = [ y . ] e ~ ,  we have for every z = 
[z.] e N( T)  that 

(x, Tz )  = [ (x . ,  T.z. )] = [(Yn, z. )] = (y, z )  

= [(T*x, ,  z, )1 = ([T*]x, z )  

Hence, x ~ ( T )  and T*x = [T*]x. Conversely, suppose x = [x,] r  
Then for almost all n E ~ ,  xnr Hence, by the Riesz theorem (Dun- 
ford and Schwartz, 1958; Reed and Simon, 1972), the linear functional 
f ,  : @(T,) ~ C given by f~(z~) = (xn, T~zn ) is unbounded. Now define the 
internal linear functional f :  ~ ( T )  ~ *C by f =  [f~]. Then for every z ~.@(T) 

f (z)  = [f.(z.)] = [ (x . ,  Tnz" )] = (X, rz  ) 

Then by a slight modification of Theorem 4.3 [where we replace ~ by 
@(T) and o"/t~ by ~(T.) ]  we conclude that f is unbounded. But then 
x r  since otherwise there would exist a y e ~  such that f (x )  = (y, z )  
for every z ~ ( T ) .  We would then have from Schwarz's inequality that 

If(z)l = I<y, z>l <- Ily II IIz II 
which implies that f is bounded. But this is a contradiction. We conclude 
that ~ (T*)  = ~([T*]) and T* = [T*]. �9 

Corollary 4.6. An internal operator T = [Tn] on F(~f~,) is self-adjoint if 
and only if Tn is self-adjoint a.e. 

The next corollary follows from the standard theory of self-adjoint 
operators, Theorem 4.4, and Corollary 4.6. 

Corollary 4. 7. If T is an internal self-adjoint operator on F(argn), then 
a(T) c_ *• and ar(T) = O. 
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It follows from Corollary 4.7 that a(T) consists entirely of ultraeigen- 
values. 

We now illustrate Corollary 3.10 with an example. Let Jg = L2[0, 1] 
and let o~/g = *:r Then ~ is a special case of an internal inner product 
space F(oeg.) in which ~ .  = ~ for all n sN.  Let A: oU ~o~f be the 
self-adjoint operator defined by (Af)(2) = 2f(2). Then T = *A is an internal 
self-adjoint operator on ~ .  Since a ( A ) =  at(A)= [0, 1], it follows from 
Theorem 4.4 that 

a(T) = ac(T ) =*[0, 11 = {2e 'N:  0-< 2 -< 1} 

Define the vectors f~ E oeg by 

{ r  for 0_<2_<1/n 
f.(2) = otherwise 

and let f =  [f.] eo~. Since I[f-[I = 1, n s N ,  I[fll = 1. Since IlAf. H = 1/.v/3n, 
we have IlTfll =[1/x/~n]. Hence, Tf~O, so f is a unit ultraeigenvector 
corresponding to the ultraeigenvalue 0. Next let 2o = [l/n]. Then 2o is an 
ultraeigenvalue of T and 20 ~ 0. Define the vectors g. eo~g by 

{ 0 ~  for 1/n<2<2/n 
g.(2) = otherwise 

and let g = [ g . ] e J g .  Then Ilgl[=l and since (fn, g n > = 0 ,  we have 
(f ,  g> = 0. Moreover, since 

Ag~ 1 
n 

we have 

gn 1 ~ m  ,/Sn 

Ilrg-20gtl [ n3n] = ~ 0  

Hence, Tg ~ 20g, so g is a unit ultraeigenvector corresponding to the 
ultraeigenvalue 20. 

Let T=[Tn]  be an internal self-adjoint operator on Yt' = F(Jf,) .  
Following quantum mechanical terminology, we call T an observable. An 
internal state is an internal self-adjoint operator D = [Dn], where D, is a 
positive trace class operator on ~n  with trace 1. If D, is a one-dimensional 
projection a.e., then D is a pure state and we can identify D with a unit 
vector ~ = [ O . ] ,  where 0.~.ug., I1 ,~ Since each T. is self-adjoint, 
there is an associated spectral measure P. .  Then P. is a projection-valued 
measure from the Borel a-algebra N(R) to the lattice of projections s 
on ~r176 It is well known that kt.(A) = tr(D.P~(A)), A eN'(R) is a probability 
measure on ~(R).  Now *~(~)  is an internal algebra of subsets of *R 
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consisting of sets of the form B = [B.], B . c ~ ( ~ ) .  Moreover, #o  r = [#.] is 
an internal finitely additive probability measure on *~(~) .  If D is a pure 
state with corresponding unit vector W, we use the notation # r .  In this case 

re(A) = <P.(A)~,., q,. > = IIP.(A)~. II 2 

We now let (*~, L~(*~(~ ) ) ,  L(#r ) )  be the corresponding Loeb prob- 
ability space. Then L r ( * ~ ( ~ ) )  is a a-algebra on *~ and L(/z~) is a 
real-valued probability measure on LoT(*~(R)). Moreover, for every 
A c ~ ( R )  we have 

L(#~)(*A) = st(#Dr(*A)) = st[tr(D.P.(A))] 

or in the case of a pure state 

L(IJ)(*A) = st[ IIP.(A)ff. tl 2] 

We call L(#~) the probability distribution of the observable T in the state D. 
If we define pr  on *~ (~ )  by Pr([A.]) = [P.(A.)], then p r  is an internal 
finitely additive projection-valued measure on *~(~) .  Moreover, for every 
A = [A. ]c*~(R)  we have 

~ = ~ = L(#ro)(A) 

We interpret Pr(A) as the quantum event that T has a value in the set 
A c*~'(R) and L(#~)(A) is the probability of this event in the state D, As 
in the standard quantum logic approach, we interpret the set of all internal 
projections ~(~f~) on Jg as the set of quantum events (or propositions) for 
a quantum system. It is not hard to show that 5e(Jf)  is an atomistic 
orthomodular lattice (Beltrametti and Cassinelli, 1981; Ptfik and Pulman- 
novfi, 1991; Morash, 1975). 

Theorem 4.8. Let T be an observable on ~ = F ( ~ . ) .  (a) 2 CCrp(T) if 
and only if PT({2}) # 0 .  (b) 2ca, .(T)i f  and only if PT({2}) = 0  and 
Pr(A) ~ 0 for every internal open set A c * ~ ( ~ )  containing 2. 

Proof. (a) By Theorem 4.4, 2 cap(T) if and only if 4. Cap(T.) a.e. But 
by the standard theory 2 .cap(T.)  if and only if P . ({2 .} ) :~0 .  The last 
statement holds a.e. if and only if P r ({2}) :~0 .  (b) If 2c~rc(T), then 
2Cap(T), so by part (a), Pr({2}) = 0, and by Theorem 4.4, 2. cac(Tn) a.e. 
By the standard theory, if 2. ca,,(T.) and A. is an open set in ~ containing 
2, then P.(A. )~0.  Hence, if A = [A.] is an internal open set, then 
Pr(A) ~ O. Conversely, suppose 2r If 2CCrp(T), we are finished, so 
suppose 2 r  Then 2cp(T), so by Theorem 4.4, 2 . cp (T . )  a.e, By the 
standard theory, if 2. cp(T.), then there exists an open set A. ~ ~ contain- 
ing 2. such that P.(A.) = 0. Therefore, pr(A) = [P.(A.)] = 0. �9 
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Theorem 4.9. Let T be an observable on ~g = F(~Fn). (a) If  2~ap(T), 
then a unit vector x e o~ is an eigenvector corresponding to the eigenvalue 
2 if and only if L(pff)({2}) = 1. (b) If oteac(T) and x is a unit ultraeigen- 
vector corresponding to the ultraeigenvalue ~, then there exists an infinites- 
imal 6 > 0 such that L(#xr)(c~ - 6, c~ + 6) = 1, where 

( ~ - 6 , ~  + 6 )  = { 2 ~ * R : ~ - 6  < 4  < ~  + 6 }  

Proof. (a) Let 2 = [4.] and x = [x.]. Then Tx = 2x if and only if 
T.x. = 2 . x . a . e .  By the standard theory Tnxn =2.Xn if and only if 
P.({2n})X. =x. .  But Pn({2.})X,, =X. if and only if 

~n( {~~ }) = l iP. ({4 .  D x .  II 2 = IIx. II 2 = 1 

(b) Suppose ~a, , (T)  and  IITx - ~ x l l  < e ,  where  [Ixll = 1 and  e > 0  is 
infinitesimal. If  e = [e.], x = [x.], ~ = [~.], then [I T~x. - ~.x.  [I < ~. a.e. 
Letting 6. = e. m and applying the spectral theorem for self-adjoint opera- 
tors (Dunford and Schwartz, 1958; Reed and Simon, 1972) gives for 

B.  = { 2 ~ :  1 2 - ~ . 1 - >  6 .}  

f/ 2 ~. > I[(r~ - ~ . i )x~  I1= = }2-~.12[[e.(d2)xnl[ 2 
0(3 

>- f~ I~ - ~. 1211P~ ]12 
n 

>- 6 2 1~ llP.(d2)x. II 2 = 6~ []P.(B.)x. II = 
n 

Hence, I I L ( 8 . ) x .  II < ~,, and it follows that 

I I L ( a .  - 6. ,  ~. + 6 . )x .  II ~ _> 1 - ~. 

Therefore, if 6 = [6.], we have 

Z(~ ~)(~ - 6, �9 + 6) = s t ( l lP . (~ .  - 6. ,  ~. + 6 . ) x .  II 2) 

-> st(1 - e )  = 1 

and the result follows. II 

Theorem 4.9(b) says that if x is a unit ultraeigenvector corresponding 
to the ultraeigenvalue c~, then in the state x, the observable T has a value 
infinitesimally close to �9 with certainty. 

5. N O N R E L A T I V I S T I C  N O N S T A N D A R D  F O C K  S P A C E  

Let ~ be a Hiibert space corresponding to the one-particle states of a 
quantum particle. For  n ~ N, we denote the nth symmetric tensor product 
of  ~ by ~<s). and the nth antisymmetric tensor product of ~ by ~ a ) . ,  



886 Gudder 

where dr<s>~ = dr(a)~ = C. We denote the symmetric and antisymmetric n 
or fewer particle spaces by 

n 

i = 0  

dfn = ~ W(a)i 
i = 0  

respectively. The symmetric and antisymmetric nonstandard Fock spaces 
over d f  are defined by 

Vs(~ '~) = F ( ~ ' :  n ~ d )  

ro( ) = n N) 

respectively. 
For m, n e ~,  m < n, let PSm, P'~m be the natural projection operators 

from ~,~ to ~ 7  and from df~ to ~ m ,  respectively. Define Uf~: *~7--* 
Fs(~  e) by U~,([~,.]) = [~b~], where 

~bg = {0~; for i > n  
for i < n 

and define U,~" * ~ "  ~ F~. ( ~ )  in this same way. Let ~ = ~ ~= o ~'~ (~)" and 
= ( ~  T=0 gta)i  be the standard symmetric and antisymmetric Fock 

spaces. We denote elements of  ~s and ~ by (~,), where ~,~.r ~(~)" 
respectively. Define U~: ~ ~ F ~ ( d f )  by U~((~b,)) = [q~,], where ~b, = 

7=0 ~ki. We also define ua: ~ -o F~(df) in this same way. The next result 
shows that * ~ 7  and ~ .  can be unitarily imbedded (to within infinitesimals) 
into F~.(~) and similarly for * " ~ ,  and ~ .  

Theorem 5.1. (a) The range of  U~, and U s are given by 

ran(U~,) = {[q~] ~Fs(df):  P~m~b~ = ~b,, n > m} 

ran(U0 = {[~b/] ~F~(df): [~bi] is finite, P~mC~, = c~ m, n >- m} 

and similarly for ran(U~), ran(U~). 
(b) U~,: *~,~eT. ~ran(U~,) is unitary and U': ~ ~ r a n ( U 0  is unitary to 

within infinitesimals. Similar results hold for U~ and U ~. 

Proof. ( a ) I f  [~b;]~ran(U~), then ~ , ~ m  for all n > m ,  so 
eSnm~n = C~n for all n -> m. Conversely, suppose P~,m~b, = ~b, for all n >- m. 
Then ~b, e d f  7 for all n a m .  Hence, [cbi]~*df m and U~,([~b~])=[~b/]. A 
similar result holds for ran(U~). Now suppose [~b,.]~ran(U0. Then 
~b, = ~ i~o ~ki, where ( ~ i ) ~ . .  Hence, 

II .ll == IIg,,ll II( ,,)ll = 
i = 0  
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so [4,~] is finite. Moreover, for n > m we have 

i = 0  i = 0  

Conversely, suppose [4,~]eFs(~),(4,1] is finite, and P~,,.4,. = 4,m,n >m.  
Let @~ = 4 , ; -  4 , i - , ,  i e~ \{0} ,  r = 4,0. Then for iei%\{0}, we have 

r = 4,, - P;~,-1)4,, = (I - P~,_ ~))4,,ea~ ~)' 

and 

4,. = 4,0+ (4,1 - 4'0) + ' " +  (4 , . - ,  - 4 , . -2)  + (4,. - 4 , . -1)  

i = O  

Since [4,,] is finite, there exists an M e N  + such that 114,. II --< M a.e. Hence, 

II0, El 2 =  LI4,. II 2 <- M a.e. 
i = O  

But it now easily follows that this inequality holds for all n e ~ .  Thus 
(@.)e~ .  and US((@,)) = [4,,]. We conclude that [4,,] eran(U0.  The result 
for ran(U ~) is similar. (b) It is clear that U~, is unitary. To show that U ~ is 
unitary to within infinitesimals, we have 

=[(,0, ,0,)1 
i = O  , = 0  

= ( ( 0 . ) ,  (O; , ) )  

where the ~ relation follows from Lemma 2.4 and the fact that 

lim ~ (0,,0:)= ~ @;,q,~) n 
n ~ o o  i = 0  i = 0  

Theorem 5.1 shows that the nonstandard Fock spaces contain the 
standard Fock spaces and moreover characterizes the subspaces of  F,(a~) 
and F ~ ( ~ )  corresponding to ~ and ~ ,  respectively. Notice that it follows 
from Theorem 5.1(b) that 

for all ~, ~ , ' e~ .  and similarly for 4 .  
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In nonrelativistic quantum mechanics, the one-particle space (neglect- 
ing spin) usually has the form ~ = L2(~3). We first treat the symmetric case. 
For  n e N ,  n > 2, Cej/f(s)n if and only if (I): R3n--* C is measurable, 

f " " " f lr . . . . .  Xn)]2 dxl " " dxn < OO 

and qb is symmetric with respect to its variables xt . . . . .  xn. Notice that we 
use the notation ~ dx for ~ dxl dx2dx3. Let n, m e N  with 1 < m  <n .  For  
Ceog(s(m) and fe , .~ ,  define an( f )O by 

(an(f)O)(x, . . . .  , Xm-1) = X /~  [ dx f*(x)O(x, x, . . . . .  xm_ l ) 

and for Oe~;r176 = C, a , ( f ) O =  0. Also, define ao(f)  on ogg (~)~ C by 
ao(f)  = 0. If we extend an(f)  by linearity, then we obtain a bounded 
operator an( f ) :  ~u ~ J g ~ .  We also define a*(f )"  ~ ~ as follows. If 
O e J f  Is)", then a * ( f ) O  = 0. If  O~og, ~ m < n, we define 

1 rn+l 
-- ~. f(xk)O(Xl, ' ' '  , Xk . . . . .  Xm+ ,) ( a * ( f ) O ) ( X l , . . . , x , , + l )  (m + l) l/2k=l 

where 2k means that the variable xk is omitted. Again, extend a * ( f )  by 
n linearity to obtain a bounded operator a * ( f ) :  ~ ~ s .  

Theorem 5.2. The operator a * ( f )  is the adjoint an(f)* of an(f).  

Proof. Suppose (I)t~O~r '~ W~-O'~ (s)p, where m, p < n. I fp  r m + 1, then 

( a * ( f ) O ,  W} = 0 = (gP, an( f  )W) 

Now suppose p = m + 1, where m < n. Then 

( a * ( f ) ~ ,  q~) 

( ) 1 ~ f(x~,)r 2k, Xm + 1 ), kI'/(Xl, Xm +1 ) 
( m  + 1)1/2 k = 1 

- - (m+l ) l /2k~=l  "'" d x l . . . d x m + l  

X f~(Xk)l~l*(Xl . . . . .  "~k . . . . .  Xm + l ) W(xl . . . . .  Xm + 1) (5.1) 

Moreover, 

( r  an(f)~P) 

=(r  l)U2 f dxf*(x)~(x, x1 . . . . .  Xm)) 

= ( m  + 1) j / ~ / ' "  
3 

f dx dx~. . . dxmf*(x)r x,,)'t'(x, Xm) x1 
(5.2) 
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The first term in the summation of  (5.1) is 

f"'fdXl'"dXm+lY*(xl)O*(x2 . . . . .  Xm+~)W(Xl . . . . .  Xm+l) (5.3) 

Replacing Xl by x and xj by x s ~ , j = 2  . . . . .  m + l ,  we find that (5.3) 
becomes 

f ' " f d x d x l , . . . , d x m f ' * ( x ) ~ * ( x t , . . . , X m ) U . L ( x ,  x 1 , . . . , X m )  (5.4) 

which agrees with the integration in (5.2). Since �9 and �9 are symmetric, 
each term in the summation of (5.1) has the same value as (5.4). Since there 
are m + 1 terms in the summation (5.1), we conclude that 

(a*(f)dP,  ~ ) = (0 ,  a . ( f )~P)  

The result now follows by linearity. II 

Let p . : y f T ~ ( s ) ,  be the projection of ] f7  onto ~f(s). and let 
n--1 P.~ = I - P. be the projection of  Jr7 onto (~  i = o ~f  (s)i. It is easy to check 

that the commutators satisfy 

[ a . ( f ) ,  a.(g)] = [an ( f ) ,  a .  (g)] = O 

For  the mixed commutators we have the following result 

Theorem 5.3. The commutators [an(f),  a*(g)] satisfy 

[an(f),  a*(g)] = (f ,  g ) P ~  - a*(g)an( f )P .  

Proof. If O~Jg  (s)n, then a . ( f ) a * ( g ) O  = O. If ( I ) s ~  (s)m, m < n, then 

(a . ( f ) a*  (g)O)(Xl . . . . .  x,.) 

1 m+l 
= an( f )  (m + 1) 1/2 ~=l ~ g(xk)~(xl  . . . . .  Ycg . . . . .  xm+ l) 

r e + I f  
-= E dXm+lf*(Xm+l)g(xk)~(Xl . . . . .  "~k . . . . .  Xm+l) 

k=l  

= g(x~) d x ~ + l f * ( X m + l ) O ( X l , . . . , 2 k , . . . , X . , + l )  
k=l  

+ ( f d x , . + , f * ( X m + l ) g ( X m + l ) ) ~ ( x ,  . . . . .  Xm) 
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If  O ~  (~)", m <- n, then 

(a* (g)a,(f)~)(Xl . . . .  , Xm) 

.f dx f*(x)(~(Xl . . . . .  xm-1) a *n ( g) N//-m 

g(Xk) r dx f*(x)O(x, xi . . . . .  Xk . . . . .  X,,) 
k = l  3 

g(Xk) f dXm+ l f* (Xm+ I)O(Xl . . . .  , X k , ' ' ' ,  Xm+ 1) 
k = !  d 

The result follows by linearity. [] 

We now define the internal operators a( f ) , a* ( f )  on 1-'s(Yf ) by 
a(f)  = [a , ( f ) ] ,  a * ( f ) =  [a*(f ) ] .  We call a( f )  and a*(f)  the internal 
annihilation and creation operators, respectively. It  follows from Theorems 
4.5 and 5.2 that a*(f)  = a(f)* and hence 

(a*(f)O,  tp) = (0,  a(f)uL) 

for all @, ~ F s ( ~ ) .  It is easy to show that 

I la - ( f )  II = Ila* (f)II = Ilfll 
so it follows from Theorem 4.2 that a(f)  and a*(f)  are bounded and 
normable with norms 

I la ( f )  II -- I la* ( f ) I I  = Ilfll] 
Thus, unlike the standard theory, a(f)  and a*(f)  are continuous and have 
domain the entire space F, (W).  Applying Theorem 5.3, we find that the 
commutator  of  a(f)  and a*(g) becomes 

[a ( f ) ,  a*(g)] = [(f ,  g)P~ - a*(g)an(f)Pn] (5.5) 

A vector O=[On]~F~ . ( J f  ) is large if ( ~ n ~  tO(s)n a . e . ,  and small if 
O,, ~ ,,~, i= 0 ~ n - ~ jf(.,.)i a.e. Thus, �9 is large if only if Pn (I)n = �9 n a.e., and small 
if and only if J- P ,  On = O, a.e. An example of  a small vector is a finite 
particle vector �9 = [Om], where there exists an n ~  such that (I)mEO'l~s n for 
almost all m, The small subspace of F~(3ef) is the range of the projection 
P "  = [P~] and is denoted P •  It follows from (5.5) that on the small 
subspace we have 

[ a ( f ) ,  a*(g)] = ~ ,  g) l  

Of course, in general we have 

[a( f ) ,  a(g)] = [a*( f ) ,  a*(g)] = 0 
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For IIf[I = 1, it is clear that the operator Nn( f ) :  of,~ -*of7 defined by 
N , ( f )  = a*(f)an(f)  is bounded and self-adjoint. Moreover, it is easy to 
show that Nn(f)  has pure point spectrum consisting of 

a(Nn(f)) = {0, 1 . . . . .  n} 

If we define the operator N ( f )  = [Nn(f)] on Fs(of  ), then by Theorem 4.2 
and Corollary 4.6, N ( f )  is a bounded normable internal self-adjoint 
operator with norm [IN(i)]l = [n]. Applying Theorem 4.4, we have 

a(U(f)) = ap(U(f)) = [{0, 1 . . . . .  n}] = {L~*N: 2 < [n]} 

Again, unlike the standard theory, N ( f )  is continuous and has domain all 
of F~. ( i f ) .  

We now consider the antisymmetric case. We again let o f  = L2(I~3). 
For n e N ,  n > 2, ~eof(~)n if and only if(I): R3"--* C is square integrable and 
(I) is antisymmetric with respect to its variables Xl . . . . .  xn. For  f s o f  
we define a n ( f ) : o f , ] - * o f ~  as in the symmetric case. We define 

....1. n a * ( f ) :  ofT, of~ as follows. If  (I)sof (")n, a*( f )O = 0. If O s o f  "(m), m < n, 
then 

(a* (f)O)(x, . . . . .  xm +,) 

1 m+l  
- (m + 1) I/2 k=l ~ ( -- 1)k+ lf(x~)O(X~'' ' ' '  Xk . . . . .  Xm+ 1) 

It is easy to check that this is again an antisymmetric function. We extend 
* n an ( f )  by linearity to obtain a bounded operator from of~--, ofa. 

Theorem 5.4. The operator a*( f )  is the adjoint of  an(f). 

Proof. As in the proof  of  Theorem 5.2, it suffices to check the case 
i~.of(a)m lff~ed,~(a)(m+ 1), m < n. As in (5.1) and (5.2), we have 

(a*(f)O,  W) 

1 m~ 1 ; f __ ( - - 1 )  k+l  . . .  d X l . . . d x m +  1 
( m  + 1) 1/2 * = l 

x f*(x , )O*(xl  . . . .  , 2 ,  . . . . .  xm+ I)W(xl . . . . . .  ~cm+ 1) (5.6) 

and 

(O, an(f)ud)=(m+l)l /zf . . . fdxdx, . . .dxm 

x f * ( x ) O * ( x l  . . . . .  Xm)~(X, x~ . . . . .  Xm) (5.7) 
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The first term in the summation in (5.6) is 

f ' " f d X l ' " d x m + , f * ( x , ) C b * ( x 2  . . . . .  X m + l ) k ~ ( X l , . . . g X m + l ) ( 5 . 8 )  

Replace Xl by x and xj by xj_ l ,J  = 2 . . . .  , m + 1, in (5.8) to get 

I . . . f d x d x l . . ' d x m f * ( x ) d P * ( x , , . . . , X m ) ~ ( X ,  Xl . . . . .  Xm) (5.9) 

The second term in the summation in (5.6) is 

- f ' " f d x l ' " d x m + , f * ( x 2 ) O * ( x l , x 3  . . . . .  X r n + l ) k ~ ( X l , . . . , X m + 1 )  

(5.10) 

Replace x2 by x and xj by x s_ l ,J = 3 . . . . .  m + 1, in (5.10) to get 

- f . . . f d x d x l . . . d x m f * ( x ) O * ( x  I . . . . .  X m ) ~ ( X l , X ,  X 2 , . . . , X m  ) (5.11) 

But since ~' is antisymmetric, (5.11) coincides with (5.9). We thus see that 
each of the m + 1 terms in (5.6) is the same as (5.9). Hence, 

(a*, ( f )O,  ud) = (~,  a , ( f )u?)  

The result follows by linearity. �9 

It is again easy to check that the anticommutators satisfy 

[an(f),  an(g)]+ = [ a* ( f ) ,  a*(g)]+ = 0 

We define the projection operator P,  : ~'~] ~ our (")" as in the symmetric case 
and let P~ = I -  P, .  

Theorem 5.5. The anticommutator [an(f),  a*(g)]+ satisfies 

[a,(f), a*(g)]+ = (f ,  g)P~  + a* (g)an(f)P~ 

Proof. If OEg/f ~")", then an(f)a*(g)~ = O. If O~Jg  ~)m, m < n, then 

(a*(g)O)(xl, . . . , x,, +1) 

1 
- (m + 1) l/zg(xl)O(x2 . . . . .  xm+ 1) 

1 m + l  

+ ( m + l )  I/2k=2 ~ ( - - 1 ) k + l g ( x k ) ~ ( X l ' ' ' ' ' 2 ~ ' ' ' ' ' X m + L )  
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Hence, 

and 

(a.* (g)O)(x. x, . . . . .  x..) 

1 
- (m + 1)i/z g ( x ) ~ ( x l , . . . ,  x,~) 

1 ~ ( -  1)kg(xk)r Xl 2k, Xm) -4- (m + 1) 1/2 ~=1 . . . . . . . .  ' 

(a , ( f ) a*  (g)~)(x , ,  . . . , xm) 

= <f, g)~(x~ . . . . .  x, ,)  + ~ ( - 1)kg(xk) 
k = l  

f dx f* (x ) r  xt,  �9 .. , 2k . . . . .  • Xm) 

If (1)e~(( (a)'~, m -< n, then 

(a* (g)an ( f ) ~)(xl . . . .  , xm) 

.j'dx f*(x) ,~(x,  x, . . . .  , a*n (g) N ~  Xm) 

= ~ ( - -1)  k+ 'g(xk) f d x f * ( x ) ~ ( x ,  x, . . . . .  2k . . . . .  xm) 
k = l  .) 

The result now follows by linearity. [] 

As in the symmetric case, we define the annihilation and creation 
operators a ( f ) = [ a , ( f ) ] , a * ( f ) = [ a * ( f ) ]  on Fa(Jg). These satisfy the 
anticommutation relations 

[a( / ) ,  a(g)]+ = [a*(f ) ,  a*(g)]+ = 0 

[a(f ) ,  a*(g)]+ = [(f ,  g ) P ~  + a*(g)a( f )P ,]  

It follows from (5.12) that on the small subspace P• 

[a(f ) ,  a*(g)]+ = (,f, g ) I  

For Ilfll = l ,  the n-particle number operator N , ( f ) : J g ] ~ , u f ]  is a 
bounded self-adjoint operator with spectrum 

a ( N , ( f ) )  = c;p(N,(f))  = {0, 1} 

These and the number operator N ( f )  = [N,( f )]  are projections. 
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6. NONRELATIVISTIC FIELD OPERATORS 

As in Section 5, we let ~ = L 2 ( ~ 3 ) .  We first treat the symmetric case. 
Let (f~), i ~ N, be an orthonormal basis for Yg where each f is continuous, 
For each x eR 3 define the bounded operators q J . ( x ) : Y g T ~ 7 ,  
~O* (x): ~ "  --* Yg~' by 

~b.(x) = i f](x)a.(f;) 
j=0 

~O*(x) = ~ f f  (x)a*(fj) 
j = 0  

We also define the bounded self-adjoint operator N. : Yg~' -~ or by 

N. = ~ a*(fj)a.(fj) 
j=0 

Of course, these operators depend on the chosen orthonormal basis and the 
order in which the basis elements are given. The next result gives explicit 
expressions for these operators and the proof is straightforward. 

Lemma 6.1. (a) If d P ~  '~s(m), 1 < m < n, then 

( O . ( x ) . ) ( x ,  . . . . .  Xm_, )  r  " ,x ,  . . . . .  
j=o 

(b) If ~ d 4  ~(s)m, 0 < m < n, then 

(~*(x) r  x,,+ 1) 
1 m + l  n 

Z Z ~(x)fj(xk)r ~ , . . . ,  x,,+,) 
(m + 1) 1/= k=l :=0 

(C) If  OEYg (s)', 1 < m <-n, then 

(N,(I))(xl , . . . ,x , , , )  = ~ ~ fj(xk)(,j~j, (I)( " ,x l  . . . . .  2k . . . . .  X,,)) 
k = l j = O  

It is clear that 

[qJ.(x), r = [~b*(x), ~k*(y)] = 0 

The next result gives other commutation relations. 

Lemma 6.2. The following commutation relations hold: 

(a) [~O.(x), ~b*(y)] = ~)'= of;(x)fT(y)P. ~ - O*(y)~ln(X)Pn. 
(b) [iV., ~k*(x)] = ~k*(x). 
(c) [N., ~O.(x)] = - ~.(x). 
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Proof. (a) Applying Theorem 5.3 gives 

[~.(x), ~k*(y)] = ~ f(x)f~j(y)[a.(f), a*(f])] 
i , j  = 0 

= ~ f~(x)J~j(y)(f~,f/>P~- ~ f~(x)J~j(y)a*(fj)a.(f)P~ 
i , j  = 0 i , j  = 0 

= ~ fj(x)j~j(y)P~ - J/*(y)O.(x)Pn 
j=O 

(b) From the definitions of N. and O*(x), we have 

[N~'~*(x)]=[~a*(fi)a~(f)'~f(x)a*(fJ)li=o j=o 

= ~ J~j(x)[a*(f.)a,(fi), a*(fj)] 
i , j = O  

= ~ ff(x)a*(f)[a,(f)a*(fj)] 
i , j =  0 

= ~ J'J'j(x)a*(f)/-.fi,fj)P. a + ~ J'7(x)a*(f.)a*(fj)a.(f)P. 
i , j = o  i , j =  o 

= ~ j'~j(x)a*(fj) = O*,(x) 
j = 0 

(c) This follows by taking the adjoint of (b) and using the fact that N, 
is self-adjoint. II 

We now define the following internal operators on Fs(•) :  ~k(x)= 
[O,,(x)], O*(x) = [O*(x)], N = [N,]. Unlike the standard theory, these oper- 
ators are bounded and defined on all of F , ( ~ ) .  Notice that N is an internal 
self-adjoint operator. We call 0(x) and O*(x)f ie ld operators. In the 
definition of O(x) we assumed that x e E  3. However, O,(x) can be thought 
of as an operator-valued function, so ~ = [~,] is an internal operator- 
valued function which defines 0(x) for all x e * R  3. The same observation 
applies for O*(x), 

We next define the concept of a delta function in the present frame- 
work. A delta function 6.v(x ) is an internal function 6:,N3 x , N 3 ~ , C  that 
satisfies: 

(1) fix(Y)= 8*(x) for all x,y~*~ 3. 
(2) For all ye*l~ 3, 8y - 6.v ( . )~*~. 
(3) For any ~beJf, the function yw-~<6y, 4)> is in *o~f' and 

<6y, 4,> ~ .  
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Of course in (3), ,~ is in the norm sense; that is, ILOy,~>-~bll is 
infinitesimal. Although a delta function is not unique, two delta functions 
are close in the following sense. If  6 and 6' are delta functions, then by (3) 
we have for every 4)eoeg that (6y, qS) ~ (6~, ~b). An important example of  
a delta function is given by the next result. 

Theorem 6.3. If (f~) is an orthonormal basis of continuous functions 
for oeg, then 

is a delta function. 

6 ~ ( x )  = x 
i= 

Proof It is clear that 6: ,N3 x ,~3.__, *C is internal and 3x(y) = 6*y(X). 
To verify (2), we observe that 

Oy = y e * ~  
i =  

To verify (3), let q~ eocg. Then 

(6y, (o)=[i=~ ~ q ~ ) f . ( y ) ] ~ * ~  

Since (f . )  is an orthonormal basis, we conclude that 

lim ~ Q~,.,q~)f~=~b 
n ~  i = O  

in the norm topology. Hence, (3y, ~b)~  q~. �9 

The next result shows that, in a certain sense, O(x), O*(x), and N are 
independent of the basis (f~). If O ~  (~')", then we can view �9 as an 
element of F, ( ~ )  in accordance with Theorem 5.1. 

Theorem 6.4. If @Sjgs(m), then: 

(a) ( 0 ( ' )O) (x ,  . . . . .  X m --1) ~ ~ / m  ~ (  " ,  x ,  . . . . .  X m _  1). 

(b) (0" (" )O)(x l  . . . . .  Xm+ 1) 
1 m + l  

g ( m  + 1) 1/2 k=l 2 6*k( " ) 0 ( X I , . . - ,  2k . . . . .  Xm+l). 
(C) Nq) ~ re(I). 

Proof (a) In the norm topology, 

lira ~ (fj, O( " ,x i  . . . . .  Xm-1))f j=q~( ",Xl . . . . .  Xm-l) 
n ~ j =  0 

and the result follows from Lemma 6.1(a). 
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(b) This follows from Lemma 6.1(b) and Theorem 6.3. 
(c) Applying Lemma 6.1(c) and the fact that r is symmetric, the 

result follows. �9 

It is clear that 

[0(x), ~(y)]  = [~ *(x), ~ *(y)] = 0 

The next result gives other commutation relations. 

Theorem 6.5. (a) [~(x), ~*(y)] =6y(x)P • -~k*(y)~k(x)P and on the 
small space P • (JCf), [~(x), ff*(y)] = 6y(x)I. 

(b) [N, ~*(x)] = ~b*(x). 
(c) [N, ~b(x)] = - i f (x) .  

Proof. Follows from Lemma 6.2 and Theorem 6.3. �9 

If f (x) is integrable on R 3 and B is an operator on JcgT, we define the 
integral of the operator-valued function A(x) =f(x)B by 

Moreover, we extend this definition by linearity to finite sums ~f(x)Bi .  
Since 

r = ~ f.(x)J~j(x)a*(fi)a.(f.) 
i , j  = 0 

we have 

f ~*(x)~.(x)dx= ~ 6i/a*(f2)a.(f. ) 
i , j =  0 

= ~ a*(fj)a.(fj)=AT. 
j=O 

It follows that 

f O*(x)O(x) dx 
Hence, ~k*(x)~(x) can be interpreted as the particle density operator. 

We call �9 0 = [T]EF~.(~f) the vacuum vector. Since by Theorem 6.5(b) 

N~k*(x) r = [N, q] *(x)] r = ~k *(x) Oo 

we see that @*(x)r is an eigenvector of N with eigenvalue 1. Moreover, by 
Lemma 6.1(b) we have 

(0*(X)Oo)(y) = ~ ff](x)fj(y) 
j = 0  



898 Gudder 

Hence, (O*(x)q%)(y)= 6x(y) and we may interpret O*(x) as the creation 
operator that creates a particle localized at x. Similarly, O(x) destroys a 
particle localized at x. 

We can extend the definition of a( f )  to include fs*ocg in the following 
way. If f =  [f,] e*A a, we define a(f)  = [a,(f,)]. In a similar way, we define 
a*(f)  = [a*(fn)]. If  A and B are operators on Fs(oug), we write A ~ B if 
A ~  ~ B~ for every (1)~:~ (s)n and all neN.  I f f ~ g ,  it is straightforward to 
show that a(f)  ~ a(g) and a*(f)  ,~ a*(g). The next result shows that ~b(x) 
and ~b*(x) are "densities" for a(f)  and a*(f),  respectively. 

Theorem 6.6. (a) For any f eJg ,  a(f) ,~Sf*(x)O(x)dx and a*f'~ 
S f(x)O *(x) dx. 

(b) a(6x) = O(x), a*(6x) = O*(x). 

Proof. (a) Since f~--~ a( f )  is conjugate linear, we have 

(x)~b.(x)dx= /.f, f j ) a . ( f j )  = a .  ~, (.fj,f>fj 
j = o  kJ=O 

Letting g. = ~7= o (fj, f ) f j ,  since g = [g.] ~ f ,  we have 

?(x)O(x, dx=[?(x)~Jn(x)dx?-=[an(gn'] 
= a(g) ,.~ a( f )  

The result for a*(f)  is similar. 
(b) From the definition of fix, we have 

a(fix) = a. x = x a. 
J J 

= [ 0 . ( x ) ]  = O(x) 

The result for a*(fx) is similar. �9 

The antisymmetric case is quite similar to the symmetric case. The 
operators O,(x), 0*(x), ~b(x), O*(x), Am, and N are defined in the same way 
on ~ ,  F,(J/g) as before. Essentially all the previous results of this section 
hold with commutators replaced by anticommutators and with an addi- 
tional factor of ( - 1 )  k+~ in Lemma 6.1(b) and Theorem 6.4(b). 

7. SECOND QUANTIZATION OF OPERATORS 

We again let ~ = Lz(R 3) and treat the symmetric case, the results in 
the antisymmetric case being similar. Let A be a self-adjoint operator on 
with domain ~(A), and let ~(A)~ ~ ~(s) .  be the subspace generated by 
product vectors whose components are in ~(A). We define ~,(A) on 
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~(A) ~s)", n -> 1, by 

(~. (A)  = A | 1 7 4  " |  + I Q A  | 1 7 4 1 7 4 1 7 4  " | 1 7 4  

and • ( A ) = 0 .  Then (2(A) has a unique self-adjoint extension, Cook 
(1953), which we also denote by ~.(A). We sometimes write 

f t . (a )  = A(x,)  + . . .  + A(x.)  

so that 

((~.(A)CP)(x, ,  . . . , x . )  = A(x , )dp(x ,  . . . .  , x . )  + . . . +  A(x . )gP(x ,  . . . . .  x . )  

We next define f2.(A) on ~f7 by 

O . ( A )  = rio(A) ~ fil (A) 0 " "  G ft.(A) 

and the internal self-adjoint operator f~(A) on F,(Jg)  by f2(A) = [~q.(A)]. 

Theorem 7.1. (a) On the intersection of  their domains 

[f~(A), f2(B)] = ~([A, B]) 

(b) I f f ~ ( A ) ,  then on the intersection of  their domains 

[f~(A), a ( f ) ]  = - a ( A f )  

Ill(A), a*( f ) ]  = a * ( A f )  

Proof .  (a) This is a straightforward verification. 
(b) For f ~ 9 ( A )  and ~ ] f ( ~ ) m c ~ ( f 2 . ( A ) ) , l  < m < - n ,  such that 

a . ( f ) d P ~ ( f 2 . ( A ) )  we have 

([~.(A), a . ( f ) ]dP) (x l  . . . . .  X m-  ,) 

= A(xk ) ( , f ,  @( ", Xl . . . . .  Xm-  1 
k 1 

= A ( X k ) ( f ,  r ", Xl . . . . .  Xm_ l 
k 1 

v / - m ( ~  A (  .)r Xl,  . . . , X m -  , )  ~ I 

m - ,  )0 + ~ OC, A ( X k ) ~ ( ' , X l  . . . .  , X , . _ I  
k = l  

= - x / ~  O c,A( .)dO(., xl . . . . .  Xm_l))  

= - v / - ~  (AU, r  xl . . . . .  x, ,_ , ) )  

= -- ( a . (A f ) c b ) ( x ,  . . . . .  x , .  -1  ) 
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Hence, 

[f~.(A), an(f)] = -a . (Af)  

and the result follows. The second result follows by taking adjoints. �9 

If A is a self-adjoint operator on ~ff and the elements of the orthonor- 
mal basis (f~) are in @(A), we define the operator (A~n)(X) on ~ff7 by 

(A~O.)(x) - A(x)~.(x) = ~ fj(x)a.(Afj) 
j = 0  

Moreover, we define the internal operator (AqJ)(x) on Fs(~cf) by 

(Aq~)(x) = A(x)qKx) = [(A~'n)(X)] 

As before, we can extend this definition to define (A~)(x) for x e*R 3. 

Corollary 7.2. On the domain of [~(x), f~(A)] we have [~b(x), s = 
(Aq~)(x). 

Proof. From Theorem 7.1(b) we have 

[~0.(x), ft.(A)] = i fj(x)[a.(fj) ,  ft.(A)] 
j = 0  

The result now follows. �9 

Theorem 7.3. On the 
I ~*(x)A(x)O(x) dx. 

Proof. By definition 

Since 

we have 

= ~ fj(x)a.(Afj) = (AqJ.)(x) 
j = 0  

domain of s we have I'~(A) 

~*(x)(A~.)(x) = ~ f~i(x)fj(x)a*(f)a.(Afj) 
i , j ~  0 

f ~*(x)(AqJ.)(x)dx = ~ 6ua*(f.)a.(Afj) 
i , j ~O  

= ~ a*(fj)a.(Afj) 
j=O  
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If  (~r 1 < - m  < n, is in the domain of  f~(A), we have 

(f~h* (x)(A~.)(x)dx (I))(x~ . . . . .  Xm) 

= (j=~o a*(fj)a.(Afj)(~)(x, . . . . .  x,.) 

= . . . . .  . . . . .  xm)> 
j = 0 k = l  

k = l j = O  

As n-+ oo, this last expression converges in norm to 

( A ( ~ ) (  " ,  XI . . . .  , fCk, . . . , Xrn ) ~--- ~ A (Xk )K~) (XI ,  . . . , X m )  
k = l  k = l  

= ( f ~ ( A )  (I))(x I . . . . .  X m )  [] 

Corollary 7.4. On the domain of  f~(A) we have 

~(A) ~ [j=~o a*(fj)a,(Afs.) l 

It follows from Corollary 7.4 that 

~(I) ~V Lj=O ~ a*(f.)a,(f.)]= N 

The next result gives an alternative expression for (A~b)(x). 

Lemma 7.5. (A~)(x) ~ [~s=o (Afj)(x)a,(fj)]. 

Proof For (I)eJcf (s)m, 1 < m < n, we have 

( ( A ~ / n ) ( X ) l ~ ) ( X l  . . . . .  X m -  1) = ~ ,  U j ( x ) ( A U j ,  I~( �9 Xl  . . . . .  X m -  1 ) )  
j = o  

= ~ f j ( x ) ~ ,  A(I)(., x, . . . . .  x~_ l ) )  
j = o  

This last expression 
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converges in norm to A(x)~b(x, xl,... , x , , _ l ) .  
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Moreover, we have 

= ~ (Af j ) (x )~j ,  i~( . xi . . . . .  Xm-1) )  
j = o  

= 

j = O k = O  

k ~ O  j = O  

By Parseval's equality, this last expression converges in norm to 

( A f t ,  r . , x l ,  . . . , Xm-- t) )fk(x) 
k = O  

= ~" (~Ck, Af~  ( " , X i , . . . , X m _ ! ) ) f k ( x  ) 
k=O 

= A ( x ) @ ( x ,  x l  . . . . .  X m -  1) [ ]  

Because of  Lemma 7.5 we could have defined 

( A ~ k , ) ( x )  = ~ ( A f s ) ( x ) a , ( f j )  
j = 0  

and Theorem 7.3 still holds. 

T h e o r e m  7.6. If H and A are self-adjoint operators on Yg, then for 
every t ~  we have: 

(a) ~(ei tn  Ae-lit-l) = eitf~(u)~(A) e -ito(H) 
(b) a ( e - i t u f )  = e- i tn<14)a(f )ema~n).  

(c) a * ( e - i m f )  = e- i ' ta<H)a*( f )e i tn~H).  

P r o o f .  (a) Applying the definitions, we have 

~ , , ( e i i H A e  - u H )  = ei t l4Ae -itl-1 (~ I |  �9 �9 | I + .  �9 �9 + I |  �9 | I | e it~lAe - i m  

Moreover, 

e x p [ i t f i , ( H ) ]  = e x p [ i t ( H  | I | . . . | I + . . . + I | 1 7 4 1 7 4  

= e x p [ ( i t H )  | I |  �9 | I] �9 �9 e x p [ I |  | I | ( i t H ) ]  

= e x p ( i t H )  |  �9 �9 | e x p ( i t H )  



Nonstandard Fock Spaces 903 

Hence, 

eit~. (n)(~ (A)e - its. (z4) = eitHAe - itH @ I |  " " | I + I |  " �9 | I | e ~'I4Ae -itH 

= O. (e imAe -ira) 

By linearity we obtain 

e~'n" (H)  f~. (A)e - ~,n. (H) = f~. (e ;'HAe - it.) 

and the result follows. 
(b) I f  * e o ~  (') ' ,  1 < m < n, then since H is self-adjoint, we have 

(e -i,n. (H)a.(f)eitn.  (u ) . ) (x  I . . . . .  x,. _ t ) 

= (e-itt-t(x, ) ' " e -  im(xm _, ) a . ( f ) e l m ( ~ l ) . . .  e itH(.m )*)(Xl . . . . .  Xm-I ) 

= e - i tH(Xl ) ' �9 �9 e - i tH(Xm - | ) ~ / / m  

• I f* (x )e"m~)e i 'mx | ) . . .  ei'I~<~ -oep(x, xl . . . . .  x ~ _  1) dx 

= x / m  f ( e  - i t H f ) * ( X ) ( Y P ( X ,  X l . . . . .  X m - - 1 )  d x  

= (a . (e - i 'Hf ) r  . . . . .  X,,,-1 ) 

Hence,  

an (e - i tH)f)  = e -itn. <H)a~(f)eitn. (H) 

and the result follows. 
(c) Take  the adjoint  o f  (b). [] 

We can extend these results to two- or higher-particle interactions. For  
example, let A(Xl ,X2)  be a self-adjoint opera tor  on ~,,(,)z, where 
A(x l ,  x2) = A(x2, Xl); that  is, (A~) (x l ,  x2) = (AO)(x2, Xl) for  all qg~Ng (s)2. 
Similar to our  previous method,  we define D0(A ) = ~ l ( A ) = 0  and on 
W<')", n -> 2, 

= A(x i ,  x j )  (~(A) = A(xi ,  xj)  2 ~, =1 
i , j =  1 

i < j  i # j  

We then define ~ . (A)  on 3r by 

n,,(A) = ~).o(A) |  | f t . (A)  

and the internal opera tor  ~(A) on F. (Yf)  is defined as ~ ( A ) =  [f2.(A)]. 
Since 

r 1 6 2  = ~ f . ( x ) f j ( x ' ) a . ( f i ) a . ( f j )  
i , j = O  
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as in the one-particle case (see remark following Lemma 7.5), we define 

A(x, x')~n(X)~On(x' ) = ~ (Af/fj)(x, x')an(fi)an(fj ) 
i j = O  

The proof of the following result is similar to that of Theorem 7.3. 

Theorem 7. 7. On the domain of f~(A) we have 

n(A) ~ ~ O*(x 30*(x)A(x, x')O(x)O(x') dx dx' 

We next briefly discuss dynamics. Let H be the one-particle Hamilto- 
nian on ~ff. For t s R, we define 

O.(x, t) = eitn.(H)/~ln(X)e - i t s .  (H)/h 

and the time-dependent field operator as the internal operator ~O(x, t) = 
[O.(x, t)]. It follows from Theorem 7.6(b) that 

~.(x, t) = ~ fj(x)a.(e"'/"fj) 
j = 0  

The equation of  motion is given by 

Ot O,(x, t) = ei'n.(m/hr . - i  (H). e-i,n.(m/~ 

in , (H)  

i 
= - -~  [O.(x,  t), ta.(H)] 

Hence 

ih ~ ~k(x, t) = [~(x, t), ~(H)] 

We also have the equal-time commutation relations 

[(O(x, t), O(Y, t)l = [O*(x, t), O*(Y, t)] = 0 

and on P'Fs(3gF) 

[(~k(x, t), qJ *(y, t)] = r 

Theorem 7.8. ih (d/Ot)~O(x, t) = H(x)(x, t). 
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Proof Applying Corollary 7.2 gives 

0 
ih ~ ~(x, t) = [~O(x, t), f~(H)] 

= ei'n(m/~[~(x), f~(H)]e - itfl(H)/h 

= ei,n{u)lhH(x)~l(x)e-i,n{U)l~ 

= H(x)O(x, t) �9 

8. KLEIN-GORDON FIELDS 

This section treats a relativistic, free, scalar (spin-zero) field for a 
particle of mass m. Such a field would correspond to a spin-zero meson. 
The section illustrates how some of the heuristic manipulations of the 
standard theory can be made mathematically rigorous. We employ natural 
units in which h = c = 1. 

The one-particle Hilbert space af ~ is taken to be the set of square- 
integrable complex functions on the mass hyperboloid with Lorentz-invari- 
ant measure. Thus, 9f~ dk/ko), where dk=dkldk2dk3, ko = 
(m2 +k2) 1/2 k2 2 2 = kl + k2 + k2, and the inner product is given by 

(~,  ~ )  = f d k  c l**(k)V(k)  

The free Hamiltonian H is defined by (H~)(k) = ko~(k) with domain 

~ ( H ) =  { ~ :  f dkkol~(k)'2 < oo} 

and the momentum operator P = (P1, P2, P3) has the form ( P ~ ) ( k ) =  
k~(k) with domain 

k2 oo} 

The energy-momentum operator P = (H, P) is sometimes written P, ,  
# = 0, 1, 2, 3. We also use the notation k = (ko, k), which is sometimes 
denoted ku, k~ = 0, 1, 2, 3. Using the notation 

0 0 2 0 2 0 2 0 2 
[ ] -  v = og o,  = . . . .  0 = - 0 ,  

axg ex 

the Kle in-Gordon equation becomes ( [] + m2)q(x) = O, where x = (Xo, x) 
and Xo corresponds to the time. Moreover, we shall need the Minkowski 
product 

k �9 x = koxo - k" x = koxo - k, x, - k 2 x  2 - k 3 x  3 
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As before, the nonstandard Fock space is Fs(~cg). Let ( f . ) , j~N,  be an 
orthonormal basis of continuous functions for ~ and define 0n (k )=  
~7=ofj(k)a,(fj)  and 0(k)=[0n(k)]  as in Section 6. It follows from 
Theorem 7.3 that 

~(P.),~fdk~O*(k)O(k) (8.1) 

and the particle number operator is 

N = fl(I) ~ dk ko 0*(k)0(k) (8.2) 

In the physics literature ~(k) and 0*(k) are usually denoted ak and a*, 
respectively. 

For OsW,  we define the "Fourier transform" 

~)(x) = ~  f d k l e - ; k X O ( k )  
d K0 

where ~ = I/V/2(2z) 3/2. More explicitly, 

f ' ~(Xo, x) = e dk (m 2 + kZ)l/2 exp[--i(m 2 + k2) l/2x0] e x p ( - i k "  x) q~(k) 

It is easy to verify that ( D 2 + m 2 ) O ( x ) = 0 ,  so ~ satisfies the Klein- 
Gordon equation. Moreover, O* also satisfies the Klein-Gordon equation. 
We now define the operators 4~+)(x) on ~ by 

j = o  

and we define 

~-,(x) = (~+~(x)), = ~ ~ (x)a.(~) 
j ~ 0  

Since J~ and f~j satisfy the Klein-Gordon equation, ~b~ +) and ~ - )  also 
satisfy this equation. As before, we define the field operators ~bt+)(x) and 
q~(-)(x) on Fs (~)  by ~bt+)(x)= [r and ~( - ) (x)=  [~b~-)(x)], which 
again satisfy the Klein-Gordon equation. Physically, ~b(+)(x) corresponds 
to the annihilation of a particle localized at x and ~b (-) corresponds to the 
creation of such a particle. 

Lemma 8.1. The following equations hold: 

f 1 e_ik" q~§ = �9 d k ~  XO(k) 

~-)(x)=~fak~e'*xO*(k) 
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Proof The result follows from 

% 
r -- ,._, - d k  e -ik. xfj(k)a,(fj ) 

j = o  J ko 

=~ fdk 1--e -ikx ~ f , ( k ) a , ( f j )  
J ko +:o 

=~ fdkle-ikxtp,(k) [] 
.l ko 

It is clear that 

and hence 

[r r = [r r = o 

[r r = [~b(-)(x), r  = 0 

Moreover, applying (5.5), on the small space we have 

[r r = ~ ~(x)f~j(y)[a,(f.),a*~(fj)] 
i , j= 0 

j = 0  

Hence, 

�9 1 
[r r  = (x)f~j(y)I 

J 

=o~2fdkle-ikXfdk'~-.~o eik'.y [ "~. ] 3 1,o j=o fAk)ff(k'tI 

=a2fdk~-~oe-lkXfdk'~-~oeik"Y,k(k')I 

The calculation so far is rigorous, but now in a heuristic sense this last 
expression is 

~2 f dk 1 e_ik. <x-y) = iA(+)(x _ y )  
.J ko 

which is the usual form found in the literature. 
We next discuss the Poincar6 covariance of  the field operators. To give 

a more relativistic notation, we identify a given ~'~Jcg with the function 
�9 (k) = ~ ' (k)  where ko = (m z + k 2) 1/2. The proper, orthochronous Poincar6 
group has a unitary representation U(b, A) on acg given by 

[U(b, A)(I))(k) = e 'k  bC,(A - 'k) 
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We extend U(b, A) to ~ "  by defining U(b, A ) = I  o n  5~f (s)~ and for 
(~.j,~o(s)m 1 <-m < n, 

(U,(b, A)tI))(kl . . . . .  k,,) = e'~kJ b(I)(A-lk I . . . . .  A-Ikm) 

It is easy to verify that U.(b, A) is a unitary representation on ~ "  and 
hence U(b, A) = [U.(b, A)] is a unitary representation on F s ( ~ ) .  

Lemma 8.2. For f e ~ ,  we have 

U,(b, A)a,(f)U,(b, A)* = a,[U(b, A)f] 

Proof Let (I)eo~eg (s)m, 1 -< m -< n, and apply the Lorentz invariance of 
the measure to obtain 

(U,(b, A)a,(f)~)(k~, . . . , kin_l) 

= e'r'kJ b(a , ( f )O)(A- lk  I . . . .  , A-lk,,  _ l) 

= e'ZCg,bv/--m f dk ~of*(k)O(k, A-lk ,  . . . .  , A- 'k in_ , )  

=w/-m tdk  l (eikbf(A-lk))*ei~be"Zk,'b~(A-lk, A - l k , , . . . ,  A-lk , ,_ l )  
.) /% 

= (a.[U(b, A)f]U.(b, A)(I))(k, . . . . .  k,._ ,) 

Hence, 

U,(b, A)a,(f)  = a,[U(b, A)f]U,(b, A) 

Multiply on the right by U,(b, A)* to obtain the result. [] 

Applying Lemma 8.2, we obtain the covariance condition 

U(b, A)a(f)U(b, A)* = a[U(b, A)f] 

We also have the following covariance conditions to within an infinitesi- 
mal. 

Theorem 8.3. (a) U(b, A)~(k)U(b, A)* .~ e -iAk b~O(Ak). 
(b) U(b, A)~b(+)(x)U(b, A)* ~ ~b(+)(Ax + b). 

Proof (a) Applying Lemma 8.2, we have 

U.(b, i)qG(k)U.(b, h)* = ~ fj(k)a.[U(b, i ) f j ]  
j=0 

An argument similar to the proof of Lemma 7.5 gives 

~.~ofJ(k)a.(U(b, A)fj) l ,~ ~.=~ ~ (U(b, A)*fj)(k)a.(fi) ] 
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Since 

we have 

U(b, A)* = [U(b, A)]--1 = U((b, A) -1) = U ( - A - ' b ,  A - ' )  

U(b, A)~(k)U(b, h)* "z ~.~= ~ (U(-A-'b,  h-')fj)(k)a,(f2) 1 

= eiAk'b$(Ak) 

(b) Applying the proof  of  Lemma 8.1, part (a), and 
invariance of the measures gives 

the Lorentz 

= [q~,+)(Ax + b)] = r + b) �9 

We now define the self-adjoint operators r  = r162 + r on 
~ .  Then the field operator 

~(x) = [r = # + ) ( x )  + r  

is a bounded internal self-adjoint operator on F s ( ~ ) .  It follows from 
Lemma 8.1 that 

f ,  (a.(x) = ~t dk ~ (e- 'k 'xO.(k)  + ei*xO*(k)) 

and 

f 1 - ' *  ~O(k) + e i~ 4 , (x )  = ~ a k  ko (e 
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We define the conjugate operators 

~.(x) = ~oqS~(x) = - i ~  . tdk  ( e - i k  ~ ( k )  - eik'x~t*n(k)) 

n(x) = [nn (x)] = -- i~ f dk (e -ik' ~k(k) - elk ~k*(k)) 

which are again self-adjoint. All the important operators can be expressed 
in terms of q~(x) and re(x). 

L e m m a  8.4. The following formulas hold: 

~(k) = ~ko f dx ~(x)e~k x + i~ f dx ~(x)e i~ x 

q,*(k) = =ko f dx 4~(x)e-ik" x - i~ f dx r~(x)e -ik x 

Proof. We can write q~.(x) as follows: 

4~"(x )=~fdk (  e-ik~176176176 - k) je ik -  

Taking the Fourier transform gives 

e - iko xo~. (k )  + eiko xo~ * ( _ k) = 2~ko ~ dx ~b. (x)e - ik- 
d 

Similarly, 
(. 

7z.(x) = - i~ J d k  (e -ikoxo~b,,(k) - eikoxo~*( - k ) ) e  ik'X 

and taking the Fourier transform gives 

e - ikoxoqG (k) -- e ikoxo~, ( _ k) = 2i~ f d x  ~,  (x)e - ik. x 

Adding these latter equations, we obtain 

~p.(k) = ~ko f dx 4~.(x)e'~ x + i~ f dx ~.(x)e ik ~ 

The equation for ~b(k) now follows and the equation for ~O*(k) follows by 
taking adjoints. �9 

Substituting the expressions for ~O(k) and ~O*(k) in Lemma 8.4 into 
(8.1) and (8.2) gives a representation of ~(P~) and N in terms of ~b(x) and 
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n(x). For example, using straightforward methods, it can be shown that 

,f n(H) ~ ~ dx 1~2(x) + V4~(x) �9 Vq$(x) + m2q$2(x)] + H,. 

where 

H,=I,o, fdkkofa,,fd,,'e'~"-x"14~.(x),~.(x')]x=x,J 
By the usual methods, the operator Hc can be eliminated by rewriting 
products in normal form. 

We can also give a nonstandard treatment of charged scalar fields. 
Suppose we have oppositely charged particles of spin zero and mass m. Let 
the charges be +e  and - e  and call the first particles and the second 
antiparticles. Let ~ = L2(R  3, dk/ko) as before and define 

~ff~,,, = ,g~ | ~'~ = (~ H (s)j | H (s)f 
j , j "  = 0 

In this case, the first Hilbert space corresponds to particles and the second 
to antiparticles. We now form the nonstandard Fock space 

For f ~ J f  we let a( f )  and a*(f)  stand for a ( f ) |  and a * ( f ) |  
respectively, and define b(f)  = I |  a( f )  and b*(f)  = I | a*(f).  We then 
define $(k) just as before in terms of the a's and if(k) analogously in terms 
of the b's. The particle number operators become 

N+=fdk~,*(k)~,(k) 
N -  = I d k  ~o ~(k)~(k) 

and the total charge operator is defined to be the internal self-adjoint 
operator 

= e(N+ -- N ) =e f dk ~o (~k*(k)~k(.k)- ~*(k)~(k)) Q 

If A is a self-adjoint operator on ~tt~ we can form the second 
quantization operator f~(A) on F~ (~') analogously to the way it was done 
for Fs(~) .  The energy-momentum operator then becomes 

f~(P~) = fdk  k,, (r + ff*(k)ff(k)) 
J ~o 
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In the present context, the important field operators are 

4( -~(x)  = ~ dk ~ .  O*(k)e i~x  

These, as well as their adjoints, satisfy the Klein-Gordon equation. The 
field operator ~b(x) = ~b(+)(x) + q~(-)(x) corresponds to the creation of a 
charge e localized at x, and q~*(x) corresponds to the annihilation of such 
a charge. 

This section has just begun the study of a nonstandard quantum field 
theory. One can now proceed in a rigorous fashion to obtain other 
standard field-theoretic results. 
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