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Nonstandard Fock Spaces
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A theory of nonstandard inner product spaces is developed using methods of
nonstandard analysis. Various results concerning nonstandard operators and
their spectra are proved. The theory is applied to construct nonstandard Fock
spaces which extend the standard Fock spaces. Moreover, a rigorous framework
for the field operators of quantum field theory is presented. The results are
illustrated for the case of Klein—Gordon fields.

1. INTRODUCTION

Although quantum field theory based on Fock space has attained
various numerical and theoretical successes, its lack of mathematical rigor
can lead to inconsistencies. This lack of rigor also inhibits our deep
understanding of the theory and may possibly produce an impediment to
further progress. Standard Fock space quantum field theory contains
certain mathematically ill-defined concepts which must be remedied to
make it rigorous. The most important of these are delta functions and
other ‘“‘generalized functions,” ‘“‘unnormalizable” plane waves, and the
manipulation of infinities. We do not advocate removing these concepts,
since we would lose the predictive and numerical power of the theory.
However, we do advocate that these concepts be retained in a rigorous
reformulation.

In this paper, we shall extend the standard Fock space to a nonstan-
dard space that is large enough to contain the “generalized functions” and
also allows one to manipulate infinities algebraically in a rigorous fashion.
The construction of the enlarged Fock space relies on the theory of
nonstandard analysis. Our main intention is to develop the properties of a
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nonstandard Fock space and the corresponding nonstandard field opera-
tors. We have not yet developed a theory of interacting fields, but we shall
illustrate our results for the case of free Klein—Gordon fields. The frame-
work that we shall present has formal similarities to the standard theory.
This is as it should be, since we do not want to lose the power of standard
quantum field theory.

We are not the first to apply nonstandard analysis to the problems of
quantum theory. There is already a considerable amount of literature
devoted to this subject (Albeverio et al, 1986; Farrukh, 1975; Francis,
1981; Kelemen and Robinson, 1972; Nakamuro, 1991; Thurber and Katz,
1974; Todorov, 1985). However, most previous investigations have applied
the nonstandard theory to obtain results about the standard universe. In
this work we contend that the nonstandard universe has physical signifi-
cance in its own right. For example, we propose that the states and
observables of nonstandard Fock space have physical content.

This paper is organized as follows. Since the reader may not be familiar
with nonstandard analysis, we present a simplified overview in Section 2.
This section stresses only the concepts of nonstandard analysis that will be
needed for the sequel. Section 3 develops the theory of hyper-inner product
spaces and operators on such spaces. Emphasis is placed on the boundedness
and spectral properties of these operators. Section 4 specializes the work in
Section 3 to investigate internal inner product spaces and internal operators.
Nonrelativistic nonstandard Fock spaces are constructed in Section 5 and
their corresponding field operators are developed in Section 6. Second
quantization of operators and its relationship to field operators are discussed
in Section 7. A relativistic nonstandard Fock space is constructed in Section
8 and the theory is illustrated for Klein—Gordon fields.

2. NONSTANDARD ANALYSIS

This section briefly reviews the theory of nonstandard analysis
(Davis, 1977; Hurd and Loeb, 1985; Manchover and Hirschfeld, 1969;
Robinson, 1966; Strogan and Luxemburg, 1976). Our presentation follows
Lindstrom (1988) fairly closely and employs the ultrapower construction
for our nonstandard model. Although the transfer principle is one of the
basic tools of nonstandard analysis, we shall not use it, for two reasons.
First, the transfer principle relies fairly heavily on the machinery of logic.
Second, although this principle is quite powerful, its abstraction hides the
constructive and analytic properties of the model. We begin by construct-
ing the nonstandard complex field *C.

Let N be the set of nonnegative integers and let 2N be the power set of
N. Let m be a nonatomic, 0—1, finitely additive measure on 2™, That is, m
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is a mapping m: 2N - {0, 1} satisfying:

(1) m({a}) =0 for every aeN.
(2) m(N) =1.
(3) m(4 uB) =m(A) + m(B) for every A, Be2™ with A "B =0.

It follows that m vanishes on every finite set and is unity on every
cofinite set. There is a natural one-to-one correspondence between such
measures and free ultrafilters on 2N. A simple Zorn’s lemma argument
implies the existence of free ultrafilters on 2 and hence such measures
must exist. Although m is not unique, it is irrelevant which m we choose
and we shall work with one fixed m in the sequel.

The following lemma summarizes the properties of m that we shall
need. These properties are well known and the simple proofs are omitted.
We denote the complement of a set 4 by 4’.

Lemma 2.1. For every A, Be2™, we have:

(a) m(4) =1 or m(4’) =1 (but not both).
(b) If 4 < B, then m(A4) < m(B).
(¢) f m(A) =m(B) =1, then m(A N B) = 1.

Let s = CM be the set of all complex-valued sequences. For (a,), (5,)€s we
define (a,) ~ (b,) if

mneN:a,=b,}=1

in which case we write a, =5, a.e. It is easy to show that ~ is an
equivalence relation. For example, to prove transitivity, suppose (a,) ~ (b,)
and (b,) ~ (c,). Let

A={neN:a,=b,}
B={neN:b,=¢,}
C={neN:a,=c¢,}

Then m(4d)=m(B) =1, so by Lemma 2.1(c), m(4~B)=1. Since
An B < C, applying Lemma 2.1(b), we have m(C) = 1. Hence, (a,) ~(c,).

We define the hypercomplex numbers *C by *C = s/~. Denoting the
equivalence class containing (a,) by [a,], we have

*C = {[a,]: (a,) es}

As in the above proof of transitivity, if (a,) ~(b,) and a,eR a.c., then
b,eR a.e. We define the Ayperreals *R by

*R={[a,]e*C: q,eR a.e.}
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and our previous observation shows that *R is well-defined. Moreover,
*R < *C. We define addition and multiplication on *C by

[a.] + [b,] = [a, + b,]
[a,11b,] =[a,b,]
and order on *R by
[a,] <[b,] if a,<b,ae.

As in our previous proof of transitivity, it is easy to show that these are
well-defined. For aeC, we define the sequence (@) by a, =a for all neN.
The zero and unit of *C are defined as 0 =[0] and 1 = [T}, respectively.

Theorem 2.2. *C is a field and *R < *C is an ordered subfield.

Proof. There are many straightforward verifications to be made and
we shall demonstrate two of them. To show the existence of inverses,
suppose {a,] #0. Letting A = {neN: g, # 0}, we have m(4) = 1. For neA,
let b, =1/a, and for neA’, let b, =0. Then

[a,][b.] =[a,b,] =[] =1

To show dichotomy of order on *R, let [a,],[b.]e*R. Let 4 =
{neN:a,<b,}. If m(4) =1, then a, <b, ae., so [a,] <[b,]. If m(4) =0,
then by Lemma 2.1(a), m(4’) = 1. Since 4’ ={neN:b, <a,}, we have
b, <a,ae., so[b,] <[a,]. Similar proofs apply to the other properties. W

The injection a +— [@} imbeds R into *R and C into *C. It is straightfor-
ward to show that this mapping is a field isomorphism from C onto its
range and an ordered field isomorphism from R onto its range. Hence, by
identification, we can and will assume that R < *R and C < *C. We call
elements of C standard and elements of *C\C nonstandard.

For [a,]e*C we define the modulus |ja,]| ={|a,[]. This mapping is
well-defined and has the usual properties of a modulus. In a similar way,
we define the complex conjugate [a,]* = [a}] and again this operation has
the usual properties. We also define the real and imaginary parts in the
traditional way. An element xe*C is infinitesimal if |x|<e¢ for every
eeR* ={aeR: a > 0}. An element x e*C is finite if |x| < a for some aeR~.
If xe*C is not finite, it is infinite.

Notice that 0 is the only standard infinitesimal. The element §, =
{1/(n + 1)] is infinitesimal since for every é€R™, the set

A={neN: 1/(n+1) <e}

contains all but a finite number of »n’s so m(4) =1. Since 4, >0, J, is
a nonstandard infinitesimal. Also, J,=[1/(n + 1)?] is infinitesimal and
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0 < 8, < é,. Moreover, [#] and [r?] are infinite. These examples show that
*R and *C are proper field extensions of R and C, respectively. Moreover,
since *R is an ordered field (and *C is a field), infinite numbers can be
algebraically manipulated and compared. The proof of the next theorem is
essentially that given in Hurd and Loeb (1985) and Lindstrem (1988).

Theorem 2.3. Any finite xe*C can be uniquely represented as a sum
x =a + ¢, where aeC and ¢ is infinitesimal.

For x, ye*C, if x — y is infinitesimal, we write x &~ y and say that x
and y are close. It is easy to show that =~ is an equivalence relation. For
any finite x€*C, the unique aeC such that x ~ a is the standard part of x
and is denoted a = °x or a = st(x). We consider st as a mapping from the
set of finite elements Fin(*C) of *C onto C. It is easy to show that st
preserves addition and multiplication on Fin(*C) and moreover preserves
< on Fin(*R). The monad of aeC is

Mon(a) = {xe*C: x ¥ a} = {xe*C: °x = a}
Thus, Mon(0) is the set of infinitesimals.
Lemma 2.4. If a,eC and lim g, = a, then [q,] ~ a.

Proof. For any ¢eR*, A ={neN:|a, —a|<e} contains all but a
finite number of n’s so m(4) = 1. Hence, [[a,] —aj<c. W

The converse of Lemma 2.4 does not hold. For example, either
[1,0,1,0,...]or [0,1,0,1,...] equals O.

We now show how to transfer structures from C to *C. If 4 = *C, we
define *4 < *C by

*4 =[A4] = {[a,)e*C: a,e4 ae.}

The set *4 is well-defined and subsets of *C of the form *A4 are standard.
It is clear that 4 < *A. Moreover, it is easy to show that 4 =*4 if and
only if A4 has finite cardinality. If 4 =C and fi 4 >C, we define
*f1*4 > *C by

*f(a,) = [f1a.) =[f(a,)]

The function *f is well-defined and functions of this form are standard. 1t
is clear that *f extends f.

If 4, = C,neN, we define [4,] < *C by [a,]€[4,] if and only if a,€4,
a.c. Subsets of *C of this form are internal. If A, =Cand f,: A, - C,neN,
we define [f,]: [4,] = *C by [f.)(a.]) =[/.(a,)] and such functions are
internal. 1t is clear that standard sets and functions are internal, while the
converse does not hold. Sets and functions that are not internal are
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external. An example of an internal set that is not standard is
[a,b] = {xe*R:a < x < b}

where a < b, a, be*R\R. Examples of external sets are Mon(0), N, R, C.
We can transfer operations on sets and functions in C to internal sets

and functions. For example, let A4, =R be measurable sets and let

f,: A, > C be integrable functions. If 4 =[4,] and f=[f,], we define the

internal integral
f fdx = [J Ja dx]e*@
A4 A,

This integral inherits many of the standard properties.

We now show that delta functions and other generalized functions
are well-defined internal functions on *R. For example, let ¢ = [1/n], where
we assume the zeroth term is 1, and define the internal function
d: *R—-*R by

1/2 1
50(x) = (27[8) —1/26—x2/2e — [(;) e_nx2/2
7/

If f: R— C is continuous and decreases rapidly, then

f&o(x) )f(x) dx = [<En;>1/2 J e~ 2f(x) dx—

It is well known that this sequence converges to f(0), so by Lemma 2.4 we
have

f 9o (x)f (x) dx =~ f(0)

In other words,

s (80110 s =00

The method that we have used to define *C is called the wltrapower
construction. This construction can be applied to any set &. We define *&
as the set of equivalence classes of sequences in & ™. In an analogous way
we have & < *¥ and we define internal sets and functions on *& as
before. The next theorem is called the saturation principle and its proof can
be found in Lindstrem (1988).

Theorem 2.5. Let (A4;) be a sequence of internal sets in *&. If
(Ni<nA;i #0 for every neN, then (), 4, # 0.
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It is easy to see that the family of internal sets in *& is closed under
finite Boolean operations and hence forms an algebra. Indeed, we have

[4,]n[B,]=[4,nB,]
[4,]V[B,] =[4,u B,]
[4,] =14.]

However, this algebra is as far from being a ¢-algebra as it could possibly
be.

Corollary 2.6. If (4;) is a sequence of internal sets in *&, then
\Jien 4, is internal if and only if ( ),y 4, = {Ji < 4; for some neN.

Proof. Sufficiency is trivial. For necessity, suppose 4 =) 4; 18
internal. Then A4\4, is internal for all ieN and clearly [),cn (4\4;) =9.
By the saturation principle, there exists an neN such that (), <, (4\4,) =0,
soAd=Jic, 4. W

We now discuss internal measure theory. Let & be a set and let
0=[Q,].Q, =%, be an internal subset of *&. Let o/, be a g-algebra on
Q,, neN. We define the internal algebra o/ =[</,] on Q as follows. A set
Aesf if and only if 4 =[A4,]is an internal set with 4, e/, a.c. As we have
seen, o is indeed an algebra, but it is not a g-algebra except in trivial cases.
Let 7 be the o-algebra generated by /. Let u, be a measure on «7,, neN.
Then u = [u,] is defined on & by

1(A) = [,1(AD = (4] €*R U {00}

Now it is easy to check that y is finally additive on /. Define the finitely
additive measure °u: &/ > RuU[c0} by

o _ °(uw(A)) if u(A) is finite
uA) = {oo if u(A) is finite or oo

If A;e o, ieN, are mutually disjoint and | J,. 4; €., then by the saturation

principle, A; = @ except for a finite number of i’s. Hence, °u is g-additive on
/. By the Hahn extension theorem (Dunford and Schwartz, 1958; Reed and
Simons, 1972), °u has a o-additive extension (°) * to &/ (the extension is
unique if °y is o-finite). Let L(.o) be the completion of < relative to (°p) *
and let L(y) be the completion of (°u)~ on L(«). We call L(u) the Loeb
measure of p and (Q, L(=), L(u)) a Loeb measure space (Hurd and Loeb,
1985; Lindstrem, 1988).

Let /' Q—*R be internal, where f=[/,] and f,: Q,— R are y,-inte-
grable. It is easy to check that °f is L(s/)-measurable and L(u)-integrable.
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We now have two natural integrals; the internal integral

fro-[jre]

and the - Loeb integral (°fdL(y). We say that f is finite if
L(u)({w eQ: f(w) # 0}) and sup|f(w)| are finite. The next theorem is proved
in Lindstrem (1988).

Theorem 2.7. 1f f is finite, then °f fdu = | °f dL().

3. HYPER-INNER PRODUCT SPACES

A hyper-inner product space # is an inner product space over the
hypercomplex field *C. That is, # is a vector space over *C with a
mapping { -, >: # x # — *C satisfying:

(1) (-, is linear in the second argument.
(2) {x,y> =y, x>* for all x,yeH#.
(3) (x,x>>0if x #0.

The norm of xeH is ||x|| = <x, xD'2. We say that xe# is infinitesimal
(finite, infinite) if | x|| is infinitesimal (finite, infinite). Moreover, we say that
x, y € are close and write x ~ y if |x — y| is infinitesimal. An example of
a hyper-inner product space is *C with inner product <{a, b)> = a*b. Al-
though the proof of the following theorem is essentially the same as in the
standard case, we include it for completeness.

Theorem 3.1. If x, y are vectors in a hyper-inner product space, then:

(@) [<x, ¥ < x|l - |yl (Schwarz’s inequality).
(b) |x+y| <|x|+|y| (triangle inequality).

Proof. (a) If y =0, then the result is immediate, so assume that y # 0.
Then for any ae*C, we have

0<|x —ay|P=<x—ay,x —ay)
= |x|? —a*<y, x> — alx, p> +|af|» |
Setting a = {y, x)/||y |2, we obtain

1<y, P

0<||x|*>—

and the result follows.
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(b) Applying (a), we have
I+ 717 = x|+ 2 Redx, ) + [y [?
< x| + 206 o]+ |2
< el + 20l I+ v l®
= (x|l +1v?
and the result follows. W

Another easily proved property is |ax| =la|- |x| for every ae*C,
xe# . The proof of the next theorem is again essentially the same as in the
standard case and we omit it.

Theorem 3.2. If x, y are vectors in a hyper-inner product space, then:

(a) |x+y|*+[lx —y|*=2|x]*+2||y|? (parallelogram law).

(b) Kx,¥>|=|x| - |»| if and only if one of the vectors x or y is a
scalar multiple of the other.

© x| = Iy]| < lx =]
e yy=s0 .t ifx+i*y|*  (@=+/—1) (polar identity).

We can apply the previous two theorems to obtain the following
corollary.

Corollary 3.3. Let x, y be vectors of a hyper-inner product space.

(a) If x is finite and y is infinitesimal, then {x, y) is infinitesimal. If x
and y are finite, then (x, y) is finite.

(b) The relation =~ is an equivalence relation.

(c) If x =y, then |x| = |y|.

(d) If x is finite and a ~ a’e*C, then ax = a’x.

(e) If x and y are finite, then x + y is finite.

(h If x ~y and z is finite, then {x, z) = {y, z).

Proof. (a) This follows from Theorem 3.1(a) and the fact that a finite
number times an infinitesimal is infinitesimal. The second statement is
similar.

(b) Suppose x ~ y and y = z. Then from Theorem 3.1(b) we have

[x—z] <lx=yl+]y—z]~0
(¢) From Theorem 3.2(c) we have
llxl =yl < |x -yl =~0
(d) Since a ~a’, we have

Jax —a'x| =la—a]- x| ~0
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(e) This follows from Theorem 3.1(b).
(f) Applying Theorem 3.1(a) gives

Kx, 2> =l =[Kx =y, ) <|x =y - |z 0 m
If ee*R* and xe#, we define the ball centered at x of radius ¢ by
B(x) ={ye: ||y —x|| <¢}

The set of all balls forms a base for a topology on # called the norm
topology. Notice that this is a very strong topology since & can be
infinitesimal. We also endow *C with this same topology. It follows from
Theorems 3.1 and 3.2(c) that addition, scalar multiplication, the norm, and
the inner product are continuous in the norm topology.

In the norm topology, a hypersequence x,€s#,ne*N, converges to
xeH if for any ee*R™ there exists an Ne*N such that |x, — x|| < for all
n = N. Notice that for any ge*R™ there exists an ne*N* such that
1/n <. 1t follows that the balls B, ,(x), ne*N*, xe#’, form a base for the
norm topology. Hence, convergence of hypersequences determines the
norm topology. That is, a set 4 < 3 is closed if and only if whenever a
hypersequence x, €4 converges to an xe#, we have xe 4. It follows that
a function f: # — # (or # — *C) is continuous if and only if for any
convergent hypersequence x,, ne*N, x,-x implies f(x,)—f(x). Of
course, the norm topology is Hausdorff. In the sequel, when we consider 5#
as a topological space we shall always assume this is the norm topology.

As usual, a subspace of # is a nonempty subset of # that is closed
under addition and scalar multiplication. If 2 < 5 is a subspace, then a
mapping T: 2 — H# is linear if

T(ax + by) =aTx + bTy

for every x, ye9, a, be*C. We call a linear mapping T an operator with
domain 9. A subset of A is bounded if it is contained in a ball centered
at 0.

Theorem 3.4. If T: # — A is an operator, then the following state-
ments are equivalent. (a) T is continuous. (b) T is continuous at 0. (c) The
set {|Tx|: ||x|] <1} is bounded. (d) There exists an Me*R* such that
[Tx|| < M|x]|| for all xe#.

Proof. (a) = (b) is trivial. Suppose (b) holds. Then there exists a
de*R* such that |Ty| < 1if ||y| <é. If ||x|| < 1, then y = 6x/2 has norm
Iyl <, so

d
SIzsl =1y <1
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Hence, |Tx| <2/8, so (c) holds. Suppose (c) holds. Then there exists an
Me*R* such that ||Ty| < M if |y|| < 1. If x #0, then y = x/||x| satisfies
Iy] < 1. Hence,

i
— | Tx| =|Ty| <M
] | 7] =7y |
We conclude that |Tx| < M| x|, so (d) holds. Finally, suppose (d) holds.
If the hypersequence x,, neN, converges to x, we have

|70 = Tx|| = | Tx, — )| < M x, — x|

Now given an ¢e*R™*, |x, —x| <e&/M eventually, so |Tx,—Tx| <e
eventually. Hence, T is continuous and (a) holds. B

If T satisfies condition (d) of Theorem 3.4, we say that T is hounded
and M is a bound. Thus, an operator T # — S is continuous if and only
if it is bounded. Unlike the standard case, a continuous operator need not
have a finite bound. If L =sup{||Tx|: |x| <1} exists, we say that T is
normable with norm |T| = L. If T is normable, then T is bounded. Indeed,
if L=|T|, then |Ty||<L for all ye# with ||y| <1. If x 0, then
y =x/||x|| satisfies |y]| <1, so

|7l =lx - 17y | < L]l x]

and T is bounded. However, if T is bounded, as we shall later see, T need
not be normable.

Theorem 3.5. Let T: # — #° be an operator and let
M ={Me*R": |Tx|| < M||x]| for all xe#'}

Then T is normable if and only if inf(.#) exists. Moreover, if T is
normable, then | T'|| = inf(.#).

Proof. If T is normable, then, as we have just shown, |Tx| <
|T|| - [lx| for all xes#, so |T|es. Now let Mesk. If |x| <1, then
|Tx|| < M|x| < M. Hence, |T| < M. Thus ||T| is a lower bound for .#,
so |T| =inf(.#). Conversely, suppose inf(.#) =N exists. As before, if
Me.# and |x| <1, then |Tx| < M. Hence, |Tx| < N, so N is an upper
bound for the set

& ={|Tx|: xe, ] < 1)

Suppose N, is an upper bound for .#". Then for any x #0, | Tx/|x| | < Ny
or |[Tx|| < No|x| and this latter inequality also holds for x = 0. Therefore,
Noe# so N < Ny. Hence, N =sup(A), so T is normable. W
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Examples of hyper-inner product spaces may be constructed as
follows. Let # be a complex inner product space and let # =*i#.
Let S:H# xH —>H, P.CxH >H, . # x# —-C be defined by
S(x,y) =x+y, Pa, x)=ax, I(x,y) ={x,y>. Then *S, *P, *I define an
addition, scalar multiplication, and inner product on *# making *# a
hyper-inner product space.

We now give an example of a bounded (and hence continuous)
operator which does not have a finite bound and which is not normable.
Let *# be an infinite-dimensional Hilbert space, let x,,neN, be an
orthonormal set in *2¢", and let s# = span{x,:neN} < *%". Then # is a
hyper-inner product space. Define T: # —# by Tx, =nx,, neN, and
extend T by linearity. If xes#, |x| =1, then x =) 7", a;x,,, a,€*C. Since

m
1=+ = § [af
1=
each of the g,’s is finite. Hence,
m
|71 = ¥, Janf
=

is finite. If M >0 is infinite, it follows that |Tx|| < M |x| for all xe#.
Hence, 7 is a bounded operator. However, T has no finite bound, since for
neN, |Tx,| =n]|x,|. Moreover, T is not normable. Indeed, suppose
M, =sup{||Tx|: | x| < 1} exists. Then M, cannot be infinite since M, — 1 is
also infinite and is a smaller bound for T. Also, as we have seen, M, cannot
be finite.

The next example shows that even if an operator has a finite bound it
may not be normable. Let # and T be as in the previous example, let ¢ >0
be infinitesimal, and define 7} = ¢T. If xe# with |x| =1, then writing x
as before, each of the q; is finite. Hence,

m
ITix|?=e* X lam
i=1

is infinitesimal. If M > 0 is not infinitesimal, we have || T,x || < M| x| for all
xeH. Hence, T, is a bounded operator and has finite bounds. However, T
is not normable. Indeed, suppose & = sup{|| T\ x|: | x|| < 1} exists. Then &
must be infinitesimal, since otherwise 4/2 is a smaller bound. Suppose § is
infinitesimal. Then for any neN

ne = ||nex, | = |T\x,| <6

Hence, 2ne <6 or ne <§/2 for every neN. It follows that ae <J/2
for every finite a. If xe#, |x| = 1, then writing x as before, since |¢;| < 1,
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we have
m m
ITix|?=¢? 3 |a:Pm <& 3 |nf?
i=1 f=1

Hence,
m 1/2 5
EEEE P
i=1

Thus /2 is a smaller bound, which is a contradiction.

Let T be an operator on # with dense domain Z(7T). Let 2(T*) be
the set of xes# for which there exists a ye# such that {x, Tz> ={y,z>
for all ze 9(T'). Notice that if y exists it is unique since 2(7) is dense. For
each such xe@(T*), we define T*x = y. It is easy to show that T* is linear
and hence is an operator with domain 2(7T*). We say that T is symmetric
if {I'x,y>=<x, Ty) for every x, ye2(T). Hence, if T is symmetric, then
T* is an extension of T. We say that T is self-adjoint if T is symmetric and
Y(T) = Z(T*). Thus, T is self-adjoint if and only if T = T*.

For an operator T on #, Ae*C is in the resolvent set p(T) if Al — T'is
a bijection of Z(T) onto # with a bounded inverse. The complement of
p(T) is the spectrum o(T). The point spectrum ¢,(T) is the set of 1 e*C such
that AT — T is not injective. Thus, A€o,(T) if and only if there exists an
x #0, xeH#, such that Tx = Ax. We call x an eigenvector corresponding to
the eigenvalue 1. The continuous spectrum o,.(7) is the set of 1e*C such
that A¢o,(T), the range ran(Af — T is dense in o, but (A — T) ™" is not
bounded. The residual spectrum is the set of Ae*C such that A¢o,(T) and
ran{Af — T') is not dense.

Theorem 3.6. (a) If Aeo,(T), then for any ee*R™* there exists an
x€9(T) with |x| =1 such that |Tx — ix| <e. (b) If €0 (T), then there
exists an x€2(T) with ||x|| =1 such that Tx ~ ix.

Proof. (a) Let Jeo,.(T) and let s¢e*R*. Since (AI—T)~! is un-
bounded, there exists a y e# such that

1
|GI=D)=y| > |yl
Letting
X = M
A1 —1)"y|
we have |x| =1 and

AT = T)x|| =WI—_”—y]:N)——_ly_”<8

(b) This follows from (a) upon letting ee*R™ be infinitesimal. W



878 Gudder

Theorem 3.6 generalizes a result given in Farrukh (1975). However,
the definitions in Farrukh (1975) are incorrect. The vector in Theorem
3.6(b) is called a (unit) ultraeigenvector corresponding to the wultraeigen-
value A. Of course, eigenvalues are special cases of ultracigenvalues and
similarly for eigenvectors.

Corollary 3.7. For any symmetric operator T on #, we have
6,(TYuo (T) =*R.

Proof. Let Aeo,(T) v (T) and suppose the imaginary part Im 4 #0.
By Theorem 3.6(a) there exists a unit vector x such that |Tx —ix| <
[Im A|. Since T is symmetric, we have

{x, Tx)y=(Tx, x> =<_{x, Tx)*
so {x, Tx>e*R. Applying Schwarz’s inequality, we have
(<x, Txy —=Re )* + (Im A)2 = Kx, Txd> — AP = |<x, (T — ADx)J?
< (T — ADx|* < (Im 4)?
This gives a contradiction, so ImA=0. W

Lemma 3.8. Let T be a symmetric operator on # and let x, x’ be unit
vectors in 2(T). If 1, A’e*R with 4 # 1’, then

|Tx —Ax| + | Tx" — A'x’

4 — A

Proof. Let y =Tx — Ax,y" = Tx" — A’x’. Then, since 1e*R, we have
A X DY+, x> =Ax +y, x> =L{Tx,x") =<{x, Tx")
=X,y +Ax D=,y >+ 4 (x, x>

[<x, x| <

Therefore,
(A= A)<x, x5 =0, ¥ — 9, x7)

Hence, by Schwarz’s inequality we have
=2 x| < <, 73]+ [ X7

and the result follows. B

<|

Y+ 1yl

Theorem 3.9. Let T be a symmetric operator on 4. (a) If x, x” are
eigenvectors corresponding to distinct eigenvalues A, A’, respectively, then
{x, x> =0. (b) If x, x” are unit ultraeigenvectors corresponding to distinct
ultraeigenvalues A, 1’ and if there exists an infinite w e*R* such that

A=A 2o(|Tx —Ax| + | Tx" = A'x’|)

then (x, x> =~ 0.
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Proof. Part (a) follows immediately from Lemma 3.8.
{(b) By Corollary 3.7, 1, A’e*R. We then have by Lemma 3.8 that
[Kx, x| < 1o ~0. B

It is claimed in Farrukh (1975) that unit ultracigenvectors for a
self-adjoint operator corresponding to distinct ultraecigenvalues are orthog-
onal to within an infinitesimal. This is incorrect. Indeed, suppose 4 # 1" are
ultraeigenvalues with 4 & A”. Let x be a unit ultraeigenvector corresponding
to A. Then Ax & A’x, so Tx ~ Ax ~ A'x. Hence, x is also an ultraeigenvector
corresponding to A”. But {(x, x> =150. An example of such a situation is
given in the next section. However, we do have the following result.

Corollary 3.10. Let T be a symmetric operator on . If A, 1’ are
distinct ultracigenvalues of 7, then there exist unit ultraeigenvectors x, x’
corresponding to A, 4’, respectively, such that {(x, x> =~ 0.

Proof. Let we*R* be an infinite number such that @ =2/|A — 4’|
Then by Theorem 3.6(a), there exist x, x” with |x||=||x’|| =1 such that
[Tx — Ax|, |Tx — A’x"|| < Hw?. Now

= 1[0 > | Tx — | + | T — ]

Hence, by Theorem 3.9(b) we have {x,x">~0. W

4. INTERNAL INNER PRODUCT SPACES

Let #,, neN, be complex Hilbert spaces and let S =H"5N #, be their
Cartesian product. As in Section 2, if (), (V) €S, we write () ~ (¥;,) if
¥, =¥, a.e.. We define I'(#,) = T'(#,: neN) by

I#,) =8/~ ={y,]: 4,)eS}
We define addition, scalar multiplication, and inner product on I'(;#,) by
] + 0] =l + 4]
[a,]0¥,] =[a. ]
Wl W) = [, ¥ 30

It is straightforward to show that I'(s#,) is now a hyper-inner product
space. We call I'(s£,) the internal inner product space generated by
{#,:neN}. [Actually, T'(s#,) is an internal subspace of *X%°, where
A =@,y #,, but this introduces an unnecessary complication, since
*A" is much too large for our purposes.]

Let ¥,, ne*N, be an internal hypersequence in I'(J#,). That is, there
exist sequences Y e#,, i, jeN, such that ¥, =[y"],, where n =[n,]. We
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define the internal sum Y ..y ¥, as the internal hypersequence given by

(n 3 ¥, >(m) - [i‘ vl }

where m = [m,]. We write ) .y ¥,=V¥ if the hypersequence m—
(3. nesn W,)(m) converges to W. The next result shows that we can form an
orthonormal “basis” for I'(s#,) using orthonormal bases from each of the
H,.

Theorem 4.1. Let S =T(#,) where H#, is separable, neN, and let
(y}), be an orthonormal basis for 5, ieN. Define the internal hyperse-
quence ¥, = [y¥];, where n =[n,;]. Then ¥,, ne*N, is an orthonormal set
in # such that for every @€ we have

Y (¥, 0¥, = (4.1)
ne*N

Proof. The vectors W, are normal since
¥ 7 =Tl =1

To show orthogonality, suppose n, me*N, with n # m. Since n; #m; a.c.,
we have

Wy ¥ > = [Y7, Y73 =0

Hence, ¥, ne*N, is an orthonormal set. Now the left side of (4.1) is the
internal hypersequence given by

(2, o, Jon =[‘§0 s

ne*N i

where ® =[¢;]. To show convergence of (4.1), let se*R*, where
¢ =[g], &;€R*. Then there exists N,eN such that m; = N, implies

<g, ieN

PRURIELS
Letting N =[N;]1e*N, if m 2 N, M e*N, we have
(3, ctnow, Jom—o|-| & wlowi-o

We call ¥,,ne*N, of Theorem 4.1 the internal orthonormal basis
generated by (¥)), i,jeN. In a similar way, we can prove Parseval’s
equality

:|<[s,-]=s |

P, 0= ) (¥, ¥, (¥, 0

ne*N
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Let T, be an operator on 4, with domain Z(T,),neN. Define
9(T) =[2(T,)] and define the operator T on I'(s¢,) by T = [T, ], where, of
course, [T, ]¥,] =[T,¥,]. We call T the internal operator generated by (T,).
When we say T,,: 5, — 5, is bounded, we mean the definition in the usual
sense.

Theorem 4.2. If T,. #,—> #,,neN, are bounded, the the internal
operator T =[T,] on # =I(s#,) is bounded and normable with norm
[|T,|}- Conversely, if T is bounded, then T, is bounded for almost all x.

Proof. For x ={[x,]e# we have
1Tl = U 13 < LI T |- s 11 = L1 T [0 1

=7, [1]x]

Hence, [|| 7, |]e*R is a bound for T, so T is bounded. Moreover, [||T, [] is
an upper bound for the set .4 = {||Tx|: |x| < 1}. Let M = [M,]e*R be an
upper bound for .# and suppose M <[||T,|]. Let ¢ =[¢,]e*R™. Then
there exist x,e#,, |x,|| = 1, such that | T,x, || > |7, | — ¢, for almost all n.
Hence, if x = [x,], we have ||x| =1 and

M = | Tx|| > [| T, |1 -

Hence, 0 <[||T,|] —M <s, which is a contradiction. Thus [|7,[] =
sup(.#) and ||T| =[||T, |]. Conversely, suppose T is bounded and 7, is
unbounded for almost all #n. Then, given M, eR™, there exist x,es#, with
|x,| =1 such that |T,x,|>M, for almost all n. Hence, for any
Me[M,]e*R* there exists an x =[x,]Je# with |x||=1 such that
|Tx| > M. This contradicts the boundedness of T, so T, is bounded for
almost alln». W

The following theorem has a similar proof.

Theorem 4.3. An internal linear functional f: # —*C,f=][f], is
bounded if and only if f,: #, - C is bounded for almost all n.

The next result relates the resolvent set and spectrum of an internal
operator with those of its generating operators. A similar theorem is
presented in Farrukh (1975). Unfortunately, the definitions and proof for
this result are incorrect.

Theorem 4.4. If T=[T,] is an internal operator on # = I(#,),
then (a) o(T) =[p(T,)], (b) 0,(T)=[0,(T,), (c) 0.(T)=[0T,)], (d)
o (T) =[o,(T,)}

Proof. (a) Suppose Ae€[p(T,)], where i =[4,]. Then A, I—~T, is a
bijection of 2(T,) onto 4, for almost all n. It easily follows that A7 — T is
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a bijection of %(T,) onto #, and (AI—-T)"'=[(1,1—T,) ""]. Since
(A, I —T,) ! is bounded for almost all », it follows from Theorem 4.2 that
(Al — T) ™! is bounded. Hence, Aep(T) and [p(T,)] < p(T). Conversely, if
Ae[l,]1¢[p(T,), then A, I — T, is not bijective or (4,1 — T,) ! exists but is
unbounded for almost all #. In the first case, it follows that AJ — 7T is not
bijective and in the second case, applying Theorem 4.2, we conclude that
(AI = T)~ ! is unbounded. Hence, A¢p(T) and the result follows. The
proofs of (b), (c), and (d) are similar. W

Theorem 4.5. If T =|[T,] is an internal operator on # =I'(4#,) with
dense domain, then T* =[T%].

Proof. Since T has a dense domain, a straightforward argument shows
that 2(T,) is dense for almost every #. We now work on this set of measure
1. Let x =[x,]€e2([T*)). Then there exist y,es#, such that {x,, T,z,> =
V> 2z for all z,e2(T,). Letting y =[y,]e#, we have for every z =
[z,]€2(T) that

$x, Tz) =[xy, Tp2, 0] = [Kn> 2,01 = <3, 2
=[KT%x,, 2,0) = [T} )x, 25

Hence, xe2(T) and T*x = [T}]x. Conversely, suppose x =[x,]¢2([T*].
Then for almost all neN, x,¢2(T}). Hence, by the Riesz theorem (Dun-
ford and Schwartz, 1958; Reed and Simon, 1972), the linear functional
[ 9(T,) — C given by f,(z,) =<x,, T,z, > is unbounded. Now define the
internal linear functional f: 9(T") — *C by f =[f,]. Then for every ze Z(T)

@) =1fa(2)] =[{Xp, T2, 0] = <x, Tz)

Then by a slight modification of Theorem 4.3 [where we replace # by
2(T) and #, by 2(T,)] we conclude that f is unbounded. But then
x ¢ 2(T*), since otherwise there would exist a y e # such that f(x) =<y, z)
for every ze2(T). We would then have from Schwarz’s inequality that

@) =Ky, 2> < |y - |z]

which implies that f is bounded. But this is a contradiction. We conclude
that 2(T*) =2(T}) and T*=[T}]. N

Corollary 4.6. An internal operator T = [T, ] on I'(s#,) is self-adjoint if
and only if T, is self-adjoint a.e.

The next corollary follows from the standard theory of self-adjoint
operators, Theorem 4.4, and Corollary 4.6.

Corollary 4.7. If T is an internal self-adjoint operator on I'(5#,), then
o(T) < *R and ¢,(T) = 0.
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It follows from Corollary 4.7 that ¢(T) consists entirely of ultracigen-
values.

We now illustrate Corollary 3.10 with an example. Let # = L0, 1]
and let # =*2". Then J# is a special case of an internal inner product
space I'(s#,) in which #, =4 for all neN. Let A: 4 - be the
self-adjoint operator defined by (4f)(4) = Af(A). Then T = *A4 is an internal
self-adjoint operator on #. Since o(4) =0.(4) =[0, 1], it follows from
Theorem 4.4 that

o(T) =0 (T) =*0,1]={Ae*R: 0< A <1}
Define the vectors f, € # by
for 0<A<1/n
="
) {0 otherwise

and let f=[f,]e#. Since |f, || =1,neN, || = 1. Since |4f, | = 1//3n,
we have |Tf] =[1/\/§n]. Hence, Tf ~0, so f is a unit ultraeigenvector
corresponding to the ultracigenvalue 0. Next let 4, =[1/n]. Then 2, is an
ultraeigenvalue of T and i, ~ 0. Define the vectors g,e# by

g,,(/"t)={\/;l for 1n<i<2n

0 otherwise
and let g =[g,Je#. Then [g|=1 and since (f,,g,>=0, we have
{f, g> = 0. Moreover, since

1
“Agn ——&n
n

1
_\_/_.3_’;

we have

1
I7e — bl =| 7 |0
\/gl’l

Hence, Tg ~ lpg, S0 g is a unit ultracigenvector corresponding to the
ultracigenvalue 4,.

Let T =[T,] be an internal self-adjoint operator on 3 =I(,).
Following quantum mechanical terminology, we call T an observable. An
internal state is an internal self-adjoint operator D =[D,], where D, is a
positive trace class operator on 3, with trace 1. If D, is a one-dimensional
projection a.e., then D is a pure state and we can identify D with a unit
vector ¥ =[y,], where y,e,, |y, | =1. Since each T, is self-adjoint,
there is an associated spectral measure P,. Then P, is a projection-valued
measure from the Borel g-algebra Z(R) to the lattice of projections L (#,)
on #,. It is well known that u,(4) = tr(D,P,(4)), A e B(R) is a probability
measure on #(R). Now *%(R) is an internal algebra of subsets of *R
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consisting of sets of the form B = [B,], B,c#(R). Moreover, u5 = [u,] is
an internal finitely additive probability measure on *#(R). If D is a pure
state with corresponding unit vector ¥, we use the notation u%. In this case

() = P (AW, Y > = | Po( AW |

We now let (*R, LT(*#(R)), L(u})) be the corresponding Loeb prob-
ability space. Then LZ(*#(R)) is a g-algebra on *R and Z(u}) is a
real-valued probability measure on L7 (*#(R)). Moreover, for every
A eB(R) we have

L(pp)(*4) =st(uL(*4) = st[tr(D, P,(4))]
or in the case of a pure state

L(p3)(*4) = st | P, (A ]

We call L(u}) the probability distribution of the observable T in the state D.
If we define P7 on *#(R) by PT([A4,]) =[P.(4,)], then P7 is an internal
finitely additive projection-valued measure on *#2(R). Moreover, for every
A =1[A4,]e*%(R) we have

“tr(DPT(A)) = °[tr(D, P, (A))] = L(u})(A)

We interpret P7(A) as the quantum event that T has a value in the set
Ae*B(R) and L(u1)(A) is the probability of this event in the state D. As
in the standard quantum logic approach, we interpret the set of all internal
projections £ () on # as the set of quantum events (or propositions) for
a quantum system. It is not hard to show that #(s#) is an atomistic
orthomodular lattice (Beltrametti and Cassinelli, 1981; Ptak and Pulman-
nova, 1991; Morash, 1975).

Theorem 4.8. Let T be an observable on # = I'(,). (a) Aea,(T) if
and only if P7({1}) #0. (b) Aec.(T) if and only if PT({1}) =0 and
PT(A) #0 for every internal open set 4 e*#(R) containing 1.

Proof. (a) By Theorem 4.4, Aeq,(T) if and only if 4,€0,(T,) a.e. But
by the standard theory i,€0,(T,) if and only if P,({4,}) #0. The last
statement holds a.e. if and only if P"({1}) #0. (b) If A€o (T), then
A¢o,(T), so by part (a), P’({A}) =0, and by Theorem 4.4, 4,e0.(T,) a.e.
By the standard theory, if A,€0.(T,) and A4, is an open set in R containing
A, then P,(A4,)#0. Hence, if A =[A4,] is an internal open set, then
PT7(A4) #0. Conversely, suppose A¢0.(T). If Aeo,(T), we are finished, so
suppose A¢0,(T). Then Aep(T), so by Theorem 4.4, 1,ep(T,) a.e. By the
standard theory, if 4,ep(T,), then there exists an open set 4, < R contain-
ing A, such that P,(4,) = 0. Therefore, P7(4) =[P, (4,)] =0. M
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Theorem 4.9. Let T be an observable on # =I'(£,). (a) If Leq,(T),
then a unit vector x €4 is an eigenvector corresponding to the eigenvalue
A if and only if L(uI)({A}) =1. (b) If a€0 (T) and x is a unit ultracigen-
vector corresponding to the ultracigenvalue «, then there exists an infinites-
imal § > 0 such that L(uD)(a — 8, « + §) = 1, where

(a—0d,a+d) ={Ac*Ria —d<i<a+d}

Proof. (a) Let 4 =[4,] and x ={[x,]. Then Tx = Ax if and only if
T,x, = 4,x, ae. By the standard theory T,x,=4,x, if and onmly if
P,({%, )x, = x,. But P,({4,})x, = x, if and only if

1 ({2 1) = | P D 2= |1 |2 =1

(b) Suppose aeo(T) and |Tx —ox| <e, where |x|=1and e >0is
infinitesimal. If & =[s,], x =[x,], « =[a,], then ||T,x, —o,x,| <¢, ae.
Letting 8, = £)/? and applying the spectral theorem for self-adjoint opera-
tors (Dunford and Schwartz, 1958; Reed and Simon, 1972) gives for
B,={ieR|A—a,|26,}

&2 > (T, — oD, | = f 12—, | Po(dix, |

> f 14— o, 2| Po(d)x, |
B’l

> 52 f o), | = 62 | Pa(By), |

Hence, ||P,(B,)x, | <¢, and it follows that
1Pty — 00y o + 8,0, > 21—,
Therefore, if 6 =[§,], we have
L(u)o = 8, 0 + 0) = st(|| P (o, — 8., @, + 5,)%, )
2st(l—¢g) =1
and the result follows. W

Theorem 4.9(b) says that if x is a unit ultraeigenvector corresponding
to the ultracigenvalue @, then in the state x, the observable T has a value
infinitesimally close to o with certainty.

5. NONRELATIVISTIC NONSTANDARD FOCK SPACE

Let 5 be a Hilbert space corresponding to the one-particle states of a
quantum particle. For neN, we denote the nth symmetric tensor product
of # by # " and the nth antisymmetric tensor product of 3 by #@”,
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where # <70 = #@° = C. We denote the symmetric and antisymmetric #
or fewer particle spaces by

n

Hi= @

i=0
n

Hy = G—)O H
=

respectively. The symmetric and antisymmetric nonstandard Fock spaces
over # are defined by

I (#)=T(#".neN)
I',(#)=TI(#":neN)

respectively.

For m,neN, m <n, let P:,,, P2, be the natural projection operators
from #7 to #7 and from #7 to H#7, respectively. Define Us: *3#7 —
I',(of) by U,([¥:]) = [¢;], where

¢i:{¢i for i=n

0 for i<n

and define U?: *#” —T,(s#) in this same way. Let # = @ =, #“ and
F =@, # be the standard symmetric and antisymmetric Fock
spaces. We denote elements of &, and £, by (y,), where ¥, e ", # "
respectively. Define U & ->T,(#) by U(W,)) =[¢,], where ¢, =
S ¥,;. We also define U &, —»T',(#) in this same way. The next result
shows that *#"” and &, can be unitarily imbedded (to within infinitesimals)
into I[',(s#) and similarly for *#” and £,.

Theorem 5.1. (a) The range of Uj, and U* are given by
ran(U;,) = {[¢;]1 €T, (#): P} b = §,, 1 2 m}
ran(U°) = {[¢,1€T,(£): [¢,] is finite, P, ¢, = ¢,,,n =2 m}
and similarly for ran(U%,), ran(U9).

(b) Us:*s#7 »ran(U3) is unitary and U*: &, - ran(U®) is unitary to
within infinitesimals. Similar results hold for U4 and U“.

Proof. (a) If [¢;]eran(Us,), then ¢,e#T” for all n=m, so
P;.¢, = ¢, for all n = m. Conversely, suppose P3¢, =¢, for all n 2 m.
Then ¢,e#7 for all n 2 m. Hence, [¢,]1e*#7 and Us,([¢;]) =[¢:] A
similar result holds for ran(U%). Now suppose [¢,]eran(U*). Then
¢, = D =0 ¥, where (y;) e Z,. Hence,

6, = 5 [wilP < J@o P
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so [¢,] is finite. Moreover, for n = m we have

Ps _Ps @l/’lt (‘Bl//i=¢m

i=0

Conversely, suppose [¢;]1€l (), (¢;] is finite, and P3¢, = ¢, n =m
Let y, = ¢, — ¢, _ 1, ieN\{0}, Y, = ¢p5. Then for ieN\{0}, we have

vi=¢,— Pi(i—— 1)¢i = - Py I))¢ie=#(s)i
and

¢n =¢0+(¢1 _d)O) +- ‘+(¢n-—l _¢n-2)+(¢n_¢n—l)
= @ ¥,
i=0
Since [¢,] is finite, there exists an M eR™ such that |¢,| < M a.e. Hence,

Z li 17 =16, 1" < M ae.

But it now easily follows that this inequality holds for all zeN. Thus
W,)e# and U((¥,)) = [¢,]. We conclude that [¢,] eran(U®). The result
for ran(U*) is similar. (b) It is clear that U3 is unitary. To show that U* is
unitary to within infinitesimals, we have

U@, U(@)> = { [@ v ) [@ 2 D

({8 8v)]

- [Z Wi ¥ >] SR
= (W) W)

where the ~ relation follows from Lemma 2.4 and the fact that
hm Z <!//1911/ >_ Z <l/,zal// > -
H® =g

Theorem 5.1 shows that the nonstandard Fock spaces contain the
standard Fock spaces and moreover characterizes the subspaces of I',(#)
and I',(o#) corresponding to &, and &, respectively. Notice that it follows
from Theorem 5.1(b) that

st{UY, Uy =y, ¥")
for all y, Y’ e &, and similarly for %,
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In nonrelativistic quantum mechanics, the one-particle space (neglect-
ing spin) usually has the form # = L*(R?). We first treat the symmetric case.
For neN, n =22, ®e#“" if and only if ®: R*®— C is measurable,

J" “J‘|(D('xi: co x| dx o dx, < o0

and @ is symmetric with respect to its variables x,, . . ., x,. Notice that we
use the notation { dx for {ff dx, dx, dx;. Let n,meN with 1 <m < n. For
®ec#*“ and feH, define a,(f)D by

(an(f)@)(xn-~-,xm_1)=ﬁjdxf*(x)®(x, Xiseons Xmo1)

and for ®e# P =C, q,(f)®=0. Also, define ay(f) on # P =C by
ay(f) =0. If we extend a,(f) by linearity, then we obtain a bounded
operator a,(f): #" — #7. We also define a}(f): #7 — A} as follows. If
Ge"", then a*()®=0. If e # " m <n, we define

m+ 1

@O ¥ ) = s 3, SEDE B )
where £, means that the variable x, is omitted. Again, extend a}(f) by
linearity to obtain a bounded operator a}(f): #; — H".
Theorem 5.2. The operator a*(f) is the adjoint a,(f)* of a,(f).
Proof. Suppose e H# W, We# ¥ where m,p < n.If p #m + 1, then
ax(NO,¥)=0=<D,a,(/)¥)

Now suppose p =m + 1, where m <n. Then

(ax ()@, ¥)
1 m+ 1
=<Wk21f(xk)q)(xla'"a)eka'--’xm+l)9\P(xla'-"xm+1)>
1 m+1
=(m+1)l/2 kgl j"'fdxl"'dxm+l
xf*(xk)q)*(xla*"a)?ln"'9xm+1)lp(x1""5xm+l) (51)
Moreover,
(@, a,(/IY)

= <(D(x1, ey X)), (M 1)12 jdxj*(x)‘l’(x, Xiyerns x,,,)>

=(m + 1)"? j x dedxl- o dX, PEOOD (X1, . X)) PR, Xy s X))
(5.2)
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The first term in the summation of (5.1) is

J' v del C Xy A X)X, e X )P, LX) (523)

Replacing x; by x and x; by x; ,j=2,...,m+1, we find that (5.3)
becomes

f- . jdx dxy, ..., dx, [*)®*(x,, ..., x,)¥(x, x1,...,X%,) (54)

which agrees with the integration in (5.2). Since ® and ¥ are symmetric,
each term in the summation of (5.1) has the same value as (5.4). Since there
are m + 1 terms in the summation (5.1), we conclude that

ax(f)®, ¢ =<D,a,(/)¥>
The result now follows by linearity. W

Let P,: #" - # " be the projection of #7 onto # " and let
P} =1 — P, be the projection of #7 onto @ 7= # @', It is easy to check
that the commutators satisfy

[2.(/), a.(8)] =[ar(f), az ()] =0
For the mixed commutators we have the following result

Theorem 5.3. The commutators [a,(f), a¥(g)] satisfy

[a.(f), ax(] =/, g>Py — a¥(ga.(f)P,
Proof. If ®e#“", then a,(fa*(g)® = 0. If ®e#", m <n, then

(@, (f)az(@P)xi, . . ., X,)

m+1

- n(f) Z g(xk)d)(xls"'5xk""’xm+1)

D7 5

m 1

= Z dxm+lf*(xm+l)g(xk)®(xl""5-£k5-",xm+i)

k=1

m+l
& (xk)dem+lf*(xm+l)q)(xla"'s 7"‘9xm+l)

+ (fdxnw— 1 ¥ 4 l)g(-xm-f—l))q)(xls ey X))
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If ®e# ™, m < n, then
(a;l:(g)an(f)q))(xla Te s xm)

= a¥(g)/m J 5 POOCx,, -3 )
= kil g(x,) def*(X)CD(x, XiyovosRierens Xpn)

= Z g(-xk) dem+1f*(xm+l)q)(xls---a)?k;'- -9xm+1)

k=1
The result follows by linearity. M

We now define the internal operators a(f),a*(f) on I, (#) by
a(f)y=la,(), a*(f)=[aX(f)]. We call a(f) and a*(f) the internal

annihilation and creation operators, respectively. It follows from Theorems
4.5 and 5.2 that a*(f) = a(f)* and hence

a*()O, V) =<D,a( /)Y
for all @, WeI' (o). 1t is easy to show that

la, (N = laz ()] =/nl/]

so it follows from Theorem 4.2 that a(f) and a*(f) are bounded and
normable with norms

la(H) | = |a*(N] =1/n] A1

Thus, unlike the standard theory, a( ) and a*(f) are continuous and have
domain the entire space I',(#). Applying Theorem 5.3, we find that the
commutator of a( f) and a*(g) becomes

[a(f), a*(g)] =[<f. g>Pi — ax(g)a,(f)P,] (5.5)
A vector O =[®, el (#) is large if ®,e#®" ae., and small if
®,e D1-4 #Y ae. Thus, @ is large if only if P,®, = ®, a.e., and small
if and only if P, ®, =®, a.e. An example of a small vector is a finite
particle vector ® =[®,], where there exists an neN such that @, e#" for
almost all m. The small subspace of I' () is the range of the projection
P+ =[P;]and is denoted P-T (). It follows from (5.5) that on the small
subspace we have

l[a( f)s a* (] =S, g>1

Of course, in general we have

[a(f), a(g)] =[a*(f), a*(g)] =0
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For ||f]| =1, it is clear that the operator N,(f): #”7 — #" defined by
N,(fY=a}X(f)a,(f) is bounded and self-adjoint. Moreover, it is easy to
show that N,(f) has pure point spectrum consisting of

o(N,(fN={0,1,...,n}

If we define the operator N(f) =[N,(f)] on I',(5#), then by Theorem 4.2
and Corollary 4.6, N(f) is a bounded normable internal self-adjoint
operator with norm |N(f)| = [r]. Applying Theorem 4.4, we have

o(N(f) =0, (N(f)=[{0,1,...,n}] ={re*N: A <[n]}

Again, unlike the standard theory, N(f) is continuous and has domain all
of I',(#).

We now consider the antisymmetric case. We again let s = L*(R%).
ForneN, n = 2, ®e# " if and only if ®: R> — C is square integrable and
® is antisymmetric with respect to its variables x,,...,x,. For fes#
we define a,(f): #, —>s#" as in the symmetric case. We define
a¥*(f). #7 - H" as follows. If De# ", a*(f)YD = 0. If Pe# ™ m <n,
then

(@3 (HIPNx1s - - s Xt 1)

1 m+1

=Wk§] (=D )P s s s K1)

It is easy to check that this is again an antisymmetric function. We extend
aX(f) by linearity to obtain a bounded operator from #72 — ",
Theorem 5.4. The operator a¥(f) is the adjoint of a,(f).

Proof. As in the proof of Theorem 5.2, it suffices to check the case
Qe We @m+D m < n Asin (5.1) and (5.2), we have

ay ()@, ¥
sz (-U"“f fdxl CdX 1
Xf*(xk)q) (xl’”-:xk:'-"xm+l)\y(xl:'"axm+l) (56)

and
(@, a,(/)¥> = (m + 1)17 f h fdx dx, -+ dx,,

X E)O*(x, .., X, )X, X, ..., X)) (5.7
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The first term in the summation in (5.6) is

‘[' T J‘dxl C X SE) PR, X VP X ) (5.8)

Replace x; by x and x; by x; ,,j=2,...,m+ 1, in (5.8) to get

J- .- jdx dx, -+ - dx,, *)O*(x,, ..., %) P, x1,.. ., X)) (59

The second term in the summation in (5.6) is

_J"'jdxx"'dxm+|f*(x2)q)*(xlax3a--'axm+l)\P(x1a---axm+1)
(5.10)
Replace x, by x and x; by x;,_,j=3,...,m+1, in (5.10) to get

——J- - jdx dx, - - dx, fF)O*(x;, . .., x,)P(x1, X, %, ..., X, (5.11)

But since ¥ is antisymmetric, (5.11) coincides with (5.9). We thus see that
each of the m + 1 terms in (5.6) is the same as (5.9). Hence,

ax (), W) =<®,a,(/)Y>
The result follows by linearity. W
It is again easy to check that the anticommutators satisfy

[a,(f), a. (s =laz(f), ai(g)]. =0

We define the projection operator P,,: #" — # " as in the symmetric case
and let Py =1—P,.

Theorem 5.5. The anticommutator [a,(f), a}(g)], satisfies
[a,(f), ax (@), =</, g>Py +ay<{gra,(f)P,
Proof. If ®e# 9", then a,(fa¥(g)® = 0. If ®e# 9" m <n, then

(aﬁ(g)cb)(xla ] xm+ l)

1
=Wg(xl)(l)(xz, e ’xm+1)
1 m+1

+Wk22(—l)k+‘g(xk)d)(x,,...,Jﬁk,...,xmﬂ)
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Hence,

(a:‘(g)(D)(x, Xisenos xm)

1
= -(—r—n+—l)”—2g(x)(b(xl, e X)

1 i N
+(m+1)1/2kz (—l)kg(xk)(b(x,x,,...,xk,...,xm)
=1

and

@(aF@ONxr, - . %)
=0 %)+ T (D)

xjdxf*(x)@(x, XiyooosKpsenosXp)
If ®e#“" m <n, then

(ax(8a()D)(xy, . . ., X,)
= a;',‘(g)ﬁ def*(x)cb(x, Xis ooy Xp)

=k§:1 (=D**1g(x,) def*(x)d)(x, Xiyoo s Xy X))

The result now follows by lincarity. B

As in the symmetric case, we define the annihilation and creation
operators a(f) =[a, ()], a*(f) =la}(f)] on T, (#). These satisfy the
anticommutation relations

[a(f), a(gls =[a*(f), a*(gl. =0
[a(/), a*(e)). = [{f.g>Py +af(ga(f)P,]
It follows from (5.12) that on the small subspace P*T,(#)

[a(f), a* ()], = {f, &>

For |f| =1, the n-particle number operator N,(f):#}—#7 is a
bounded self-adjoint operator with spectrum

o(N.(f)) = 0,(N.(f) ={0, 1}
These and the number operator N(f) = [N, (f)] are projections.
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6. NONRELATIVISTIC FIELD OPERATORS

As in Section 5, we let # = L%(R®). We first treat the symmetric case.
Let (f;), ieN, be an orthonormal basis for s# where each f; is continuous.
For each xeR® define the bounded operators ,(x): #" - #",
Yx(x): A5~ H5 by

()= % £0a,(1)

Yre) = . fFaxf)
j=0
We also define the bounded self-adjoint operator N, : #7 — #" by

N, = Z az (f)a,(f)

Of course, these operators depend on the chosen orthonormal basis and the
order in which the basis elements are given. The next result gives explicit
expressions for these operators and the proof is straightforward.

Lemma 6.1. (a) If ®es#°™, 1 <m <n, then

GO 1) =/ Y [ O 1)
(b) If ®e# ™, 0 <m <n, then
(!/’ (x)q))(xla s m+l)

1 m+1 n

=W k;l j;of}" ;) @xy, o Ry e Xy 1)

(c) f ®e# @ 1 <m <n, then

(Nnd))(Xh o ’xm) =ki1 -iofj‘.(xk)%’ (D( s xl’ MR ] 2k7 LR ] xm)>
It is clear that
W, (), ¥ (W] =¥, ¥ x(»] =0

The next result gives other commutation relations.

Lemma 6.2. The following commutation relations hold:

(a) W (), Y X = Y7o fiCVFOIP7 — Y (DW(X)P,.
(b) [N, ¥7(x)] =¥ (x).
(©) [No, ¥,(0)] = —¥,(x)-



Nonstandard Fock Spaces 895
Proof. (a) Applying Theorem 5.3 gives

W, (x), ¥ (] = Z LQFDNa (£, ax ()]

i,j=0

= i FfF Do fi>Pr — Z L (az(f)a,(f)P,

i,j=0 ij=0

= 3 LML ~ VWL WP,

(b) From the definitions of N, and ¥ *(x), we have

n

N, ¥ )] = [Z at (fa,(f). Z f}"(x)a:‘(f,-)}

)

= Z Si@laz (fda,(f), az (f)]

ij=0

i FF@ak(fla,(f)ai ()]

B

= Y [ ®ar(f)<f Py + Z SFXax(fax(fa.(f)P,

ij=0 ij=0

n

= L 0ar() =i

(¢) This follows by taking the adjoint of (b) and using the fact that N,
is self-adjoint. M

We now define the following internal operators on I',(#): ¥(x) =
[W,(X)], ¥ *(x) =Y ¥(x)], N =[N,]. Unlike the standard theory, these oper-
ators are bounded and defined on all of I',(##). Notice that N is an internal
self-adjoint operator. We call y(x) and ¢ *(x) field operators. In the
definition of y/(x) we assumed that xeR*. However, ,(x) can be thought
of as an operator-valued function, so ¥ =[y,] is an internal operator-
valued function which defines (x) for all xe*R> The same observation
applies for y*(x),

We next define the concept of a delta function in the present frame-
work. A delta function §,(x) is an internal function d: *R* x *R* —» *C that
satisfies:

(1) 3.(y) =d6%(x) for all x, ye*R’.

(2) Forall ye*R®, 8, =4,()e*#.

(3) For any ¢es#, the function y—<{d,,¢> is in *# and
By $> % 9.
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Of course in (3), &~ is in the norm sense; that is, s
infinitesimal. Although a delta function is not unique, two delta functions
are close in the following sense. If § and 8" are delta functions, then by (3)
we have for every ¢ e # that {J,, ¢ ~ {J), ¢ >. An important example of
a delta function is given by the next result.

Theorem 6.3. 1f (f;) is an orthonormal basis of continuous functions
for A#, then

5,9 = [_if,-(x)ﬁ(y)]

is a delta function.

Proof. Tt is clear that 6: *R* x *R’— *C is internal and 6,(y) = 6¥(x).
To verify (2), we observe that

o, =| £ v [enr
To verify (3), let ¢ es#. Then
9y, &> = _;%,Wﬁ(y)]e*%

Since (f;) is an orthonormal basis, we conclude that

im 3 <f b=

B D =0
in the norm topology. Hence, {4,,¢>~¢. B

The next result shows that, in a certain sense, ¥(x), ¥ *(x), and N are
independent of the basis (f;). If ®e# ™, then we can view ® as an
element of I',(#°) in accordance with Theorem 5.1.

Theorem 6.4. If ®e# >, then:

(@) W )DNXys s X)) RSB, Xy Xy 1),
(®) (W*(- )<I>)(xx,-~1 Xt 1)

m+

(m+l)‘/2 Z 0% ( YOy, v Xy ooy Xy )

(c) NO = m®.
Proof. (a) In the norm topology,

hm Z <f}9(D(.9xla---’xm—l)>fj"=q)(.5x19--'axm—l)

n—»oojzo

and the result follows from Lemma 6.1(a).
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(b) This follows from Lemma 6.1(b) and Theorem 6.3.
(¢) Applying Lemma 6.1(c) and the fact that ® is symmetric, the
result follows. M

It is clear that

W), (W] =Y *(x), y*(] =0

The next result gives other commutation relations.

Theorem 6.5. (a) [Y(x), y*(y)] = 0,(x)P* —y*(yW(x)P and on the
small space P (#), [y (x), y*(»)] = 6,(x)L.

(b) [N, y*(x)] =y *(x).

(© [N, ¥(x)] = —y(x).

Proof. Follows from LLemma 6.2 and Theorem 6.3. W

If f(x) is integrable on R® and B is an operator on #”, we define the
integral of the operator-valued function A(x) = f(x)B by

jA(x) dx = <Jf(x) dx)B

Moreover, we extend this definition by linearity to finite sums ) f;(x)B;.
Since

Y r O, (x) = ioﬁ(X)f}*(X)a,T(ﬁ)an(ﬁ)

iLj=

we have

Jl//,’!‘(X)l//n(x) dx = }20 dyan(fan(fi)

= Y a¥(fla.f;) =N,

j=0

It follows that

flﬂ*(X)lﬁ(X) dx = UM(X)%(X) dx} =[N,]=N
Hence, ¥ *(x){(x) can be interpreted as the particle density operator.
We call @, =[1]el,(#) the vacuum vector. Since by Theorem 6.5(b)
Ny *(x)®@o = [N, Y *(x)] Qo = ¢ *(x) Dy

we see that ¥ *(x)®@, is an eigenvector of N with eigenvalue 1. Moreover, by
Lemma 6.1(b) we have

W7 () Q) y) = ;]}"(X)ﬁ(y)
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Hence, (y *(x)®,)(y) =0,(y) and we may interpret ¥ *(x) as the creation
operator that creates a particle localized at x. Similarly, ¥(x) destroys a
particle localized at x.

We can extend the definition of a( /) to include fe*# in the following
way. If f=[f,]e*o#, we define a(f) ={a,(f,)]. In a similar way, we define
a*(f)=[a*(f,)) If A and B are operators on I',(#), we write A ~ B if
A® ~ B® for every ®e# " and all neN. If f ~ g, it is straightforward to
show that a( f) = a(g) and a*(f) ~ a*(g). The next result shows that y(x)
and i *(x) are “densities” for a(f) and a*(f), respectively.

Theorem 6.6. (a) For any fed,a(f) =~ (f*(x)y(x)dx and a*f~
§ O *(x) dx.
(b) a(d,) = ¥(x), a*(4,) = ¥ *(x).

Proof. (a) Since fi—a(f) is conjugate linear, we have
[remma = £ s pa - o £ 0)
Letting g, = .7 {f}, /)f;, since g =[g,] ~f, we have
j S*OW(x) dx = [Jﬁ (W (x) dx ] = [a,(g.)]
=a(g) ~a(f)

The result for a*(f) is similar.
(b) From the definition of §,, we have

) =[a( £ 11007 |-| £ swacn)]
~ 1,9 = ¥

The result for a*(d,) is similar. M

The antisymmetric case is quite similar to the symmetric case. The
operators y,,(x), ¥ ¥(x), ¥(x), ¥ *(x), N,,, and N are defined in the same way
on #", T (#) as before. Essentially all the previous results of this section
hold with commutators replaced by anticommutators and with an addi-
tional factor of (—1)**' in Lemma 6.1(b) and Theorem 6.4(b).

7. SECOND QUANTIZATION OF OPERATORS

We again let # = L*(R®) and treat the symmetric case, the results in
the antisymmetric case being similar. Let 4 be a self-adjoint operator on
with domain 2(4), and let 2(4)®" < # " be the subspace generated by
product vectors whose components are in 2(4). We define Q,.(4) on
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(A" n =21, by
Q) =4ARIQ  QI+IRARI® - QI+IR - QIR A

and Qy(4) =0. Then Q(A4) has a unique self-adjoint extension, Cook
(1953), which we also denote by Q,(4). We sometimes write

Q,(4) = A(x)) + -+ + A(x,)
so that
(Q,(ADB)(x,, ..., x,) = APy, . .., %)+ + Ax)D(x,, . . ., X,)
We next define Q,(4) on #7 by
Q,(4) =0 O B - ®Q, ()
and the internal self-adjoint operator Q(A4) on IT',(#) by Q(A4) =[Q,.(4)].
Theorem 7.1. (a) On the intersection of their domains
[Q(4), UB)] = Q([4, B])
(b) If fe%(A), then on the intersection of their domains
[Q(A), a(f)] = —a(4f)
[Q(A), a*(f)] = a*(4f)

Proof. (a) This is a straightforward verification.
(b) For fe2(4) and ®eA“"ND2(Q,(4),1 <m <n, such that
a,(f)®e2(Q,(A)) we have

([2,(4), a,(NPYx,, . .., Xy 1)
=ﬁ<:§: AL O xy, - ,xm_1)>>
_ (gn(f) él A(xk)(D)(xl, e Em)
:ﬂcg AL D x5, .,xm_,)>>
_\/,;<<f,A( VO X1 X))
YA ,xm_1)>)

k=1

= —/m L ACH( X X))

= —/mAL O Xy, X))
= —(a,(AN)DYxy,s - - s Xpp_1)
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Hence,
[Q,(4), a,(f)] = —a,(4f)
and the result follows. The second result follows by taking adjoints. W

If 4 is a self-adjoint operator on 4 and the elements of the orthonor-
mal basis (f;) are in 2(A4), we define the operator (4y,)(x) on #7% by

(4,)) = 4G, () = 3. 1,47
Moreover, we define the internal operator (4y)(x) on I',() by
(AY)(x) = AXW(x) =[(4¢,)(x)]
As before, we can extend this definition to define (4y)(x) for x e*R3.

Corollary 7.2. On the domain of [Y(x), Q(4)] we have [ (x), UA)] =
(AY)(x).
Proof. From Theorem 7.1(b) we have

0. Do)l = 3. £en (1), (A

= ‘_io f;(®¥)a,(4f;) = (4y,)(x)

The result now follows. W

Theorem 7.3. On the domain of Q(4) we have Q(A4) =~
§ ¥ * ) AC(x) dx.
Proof. By definition

f AR AW dv = [ f UEAY)X) dx}
Since

PN = 3 S Wal ()
we have o

f VAV dx = Y 6,a8(f)an(Af)

Lj=0
n

= ¥ af(fa(45)
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If ®e# ™ 1 <m <n, is in the domain of (4), we have

(fl//i‘i (xX)(AY,)(x) dx ‘D)(xl, s Xn)

=( 5 a;‘,‘(j‘;-)a,,(A]})tl))(xl, %)

j=0

IIM=

X 0000 xi )

f(xk)<fj,A(I>( s Xy X))

||M§
u[\/j:

k

As n — o0, this last expression converges in norm to
m m
Y AD xRy X)) = Y AX)R(Xy, -, X,,)
k=1 k=1

=(QUA)DP)x,,...,x,) W
Corollary 7.4. On the domain of (A4) we have

n

0(4) ~ [ 2 aif(ﬁ)an(Aﬁ)]

i=0

It follows from Corollary 7.4 that

sz[ianm%mq=N

j=0
The next result gives an alternative expression for (4y)(x).
Lemma 7.5. (Af)(x) = [zj’-’= o (Af)x)a, ()]

Proof. For ®e#" 1 <m < n, we have

((Al//n)(x)q))(xls < Xy — 1) = [_Vn_:o.f/(x)<Aﬁ’ (D( T Xy ey Xy 1)>

= 'Zn:oj;(x)(/;,A(D( S Xps ey X 1)

This last expression converges in norm to A(x)®(x, x,,

s X 1)
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Moreover, we have

( ) (Aﬁ)(x)a,,(ﬁ)fb)(x,, %)

Jj=0

= 5 AR 31 )

=3 S e AL O DY)

j=0k=0
B kiofk(x) Aio <Afk,f}><‘];’ (I)( Ta Xl X l)>

By Parseval’s equality, this last expression converges in norm to

3 A O 51 )4

SPIRVAVL CRPRRE SR VAC

= AN, X1y Xy ) W

Because of Lemma 7.5 we could have defined

U)) = 3 (A7) ()

and Theorem 7.3 still holds.

Theorem 7.6. If H and A are self-adjoint operators on J#, then for
every teR we have:

(a) Q(eirHAe—itH) = eitﬂ(H)Q(A)e_nQ(H)‘
(b) afe~"f) = =" £)ei R,
(C) a*(e—ile) — e“"“(”)a*(f)e"’“(”).

Proof. (2) Applying the definitions, we have
Q,(e™de~ ") =" ge" QIR - @I+ +I®  QIQe ™ ge ="
Moreover,
explitQ,(H)] =explitHRI® - @I+ +1® - @ IR H)]
= expl(tH) ®I® @]+ expll @ - - ® I ® (itH)]
=exp(itH) ® - - - ® exp(itH)
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Hence,
e" MU0, (A)e D = "o~ QIR QI+IQ - @IQe e
=0, (e" Ao~ i)
By linearity we obtain
e (H)Q, (A)e ) = Q (" Ae ~iH)

and the result follows.

(b) If ®e# ", 1 <m < n, then since H is self-adjoint, we have

(e =0y (e DDNx,, ..., %, )

- (e‘itH(x,) e g mitH _,)an(f)eity(xl), .. eizH(xm)(I))(xl’ e X 1)
= p—iH(x)) ., _e-ilH(xm_l)\/E

X Jj*(x)e””“’e””‘xl) s @ m —OQ(x, Xy, ., Xy 1) dX

= \/;1 J(e“"”f)*(x)@(x, Xiyeory X, 1) dx
= (an(e_itﬂf)q))(xls rees xm— l)

Hence,
an(e—irﬂ)f) — e—itQ,, (H)an(f)eitﬂ,,(ﬂ)

and the result follows.
(c¢) Take the adjoint of (b). M

We can extend these results to two- or higher-particle interactions. For
example, let A(x,,x,) be a self-adjoint operator on H#2, where
A(x;, x,) = A(x,, x,); that is, (AP)(x,, x,) = (Ad)(x,, x;) for all peH# 2.
Similar to our previous method, we define Q,(4) =Q,(4) =0 and on
H nz2,

QA = Y Alx, xj)—i Y A(x;, x;)
i’ij<=j1 1]:

We then define Q,(4) on #7 by
Q,(4) =Qe() ® - ®Q,(4)

and the internal operator (A4) on I',(#) is defined as Q(4) =[Q,(4)]
Since

YW, (x7) = Z Si)f(xDa,(f)a.(f;)

ij=0
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as in the one-particle case (see remark foliowing Lemma 7.5), we define

A, X W, (W (x7) = i (Aff)x, x)a,(f)a.(f;)

ij=0
The proof of the following result is similar to that of Theorem 7.3.

Theorem 7.7. On the domain of Q(4) we have

UA) ~ % Ht// *eW* () ACx, x W (x7) dx dx’

We next briefly discuss dynamics. Let H be the one-particle Hamilto-
nian on . For teR, we define

(e, 1) = €D, (x)e =m0

and the time-dependent field operator as the internal operator Y(x, f) =
[¥.(x, ). It follows from Theorem 7.6(b) that

Vo (x, 1) = io Si(x)a,le izH/hfj)

The equation of motion is given by

lﬁ,,(x, ) = ™Y, (x )<_M> o ~ i1 ()

+ lQ"fEH) eitQ,, (H)/hlpn (x)e —itQy, (H)}h

= 2 a5 0, O, ()]
Hence
i
ih s, ) = Y, ), (]

We also have the equal-time commutation relations
[W(x, 0, ¥(y, D] = Y *(x, D, ¥*(3, ] =0
and on PT,(#)
[W(x, D, 9 >*(y, 0] = 6,(x)
Theorem 7.8. ih (0/00)W(x, t) = H(x)(x, ).
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Proof. Applying Corollary 7.2 gives

i 2y, ) = [0, ), )

— ei'n(”)/"[l//(x), Q(H)]e — i1QUH )k
— e"’Q(”)/"’H(x)t//(x)e — i H )

=HxW(x,r) A

8. KLEIN-GORDON FIELDS

This section treats a relativistic, free, scalar (spin-zero) field for a
particle of mass m. Such a field would correspond to a spin-zero meson.
The section illustrates how some of the heuristic manipulations of the
standard theory can be made mathematically rigorous. We employ natural
units in which A=c¢ =1.

The one-particle Hilbert space # is taken to be the set of square-
integrable complex functions on the mass hyperboloid with Lorentz-invari-
ant measure. Thus, # =L%R3 dk/k,), where dk=dk,dk,dk,, ko=
(m?+k*2 k*=ki+ k3+ k3, and the inner product is given by

(D, ¥ = Jdk £- O*(k)P(k)
0
The free Hamiltonian H is defined by (H®)(k) = k,®(k) with domain
9(H) = {CDG%: fdk ko|®(k)|* < oo}

and the momentum operator P =(P,, P,, P;) has the form (P®)k) =
k®(k) with domain

Y P) = {(De,}f fdk lif (k)P < oo}

The energy-momentum operator P = (H,P) is sometimes written P,,
p=0,1,2,3. We also use the notation k = (k,, k), which is sometimes
denoted k,, u =0, 1, 2, 3. Using the notation
i) o 9% 9 97

=*———V2=———————~—--=52—52——52—62

Ox2 xz ox? oxi axz 0 T RT3
the Klein—Gordon equation becomes (O + m?)n(x) = 0, where x = (x,, X)
and x, corresponds to the time. Moreover, we shall need the Minkowski
product

k 'x=k0x0'—k'x=kox0'—klx| _kzxz—k:-,x:;
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As before, the nonstandard Fock space is I', (). Let (f;),jeN, be an
orthonormal basis of continuous functions for # and define y,(k) =
Y of;i(K)a,(f;) and (k) =[y,(k)] as in Section 6. It follows from
Theorem 7.3 that

Qep,) ~ Jdk i— H0p () 8.1)

and the particle number operator is

N=0Q()~ j dk -]i—o U*KY(k) (8.2)

In the physics literature (k) and  *(k) are usually denoted 4, and af,
respectively.
For ®e s, we define the “Fourier transform”

- 1 .
D(x) =« Jdk . e ~* (k)
0
where o = 1/ﬁ(2n)3/2. More explicitly,

- 1
B(xy, X) =0 Jdk R exp[ —i(m? + k) 2x,] exp( —ik * x) ®(k)

It is easy to verify that (Df+m2)<f)(x) =0, so ® satisfies the Klein—
Gordon equation. Moreover, ®* also satisfies the Klein—Gordon equation.
We now define the operators ¢{™)(x) on #" by

#5960 = ¥ f (1)
and we define
$5700) = ($4(x))* = _ﬁof}" (ax (/)

Since f: and fj“ satisfy the Klein—Gordon equation, ¢{™ and ¢{ also
satisfy this equation. As before, we define the ficld operators ¢ *)(x) and
¢ (x) on T(#) by ¢(x) =[¢;(x)] and ¢ (x) = [¢{(x)], which
again satisfy the Klein—Gordon equation. Physically, ¢(+)(x) corresponds
to the annihilation of a particle localized at x and ¢‘~ corresponds to the
creation of such a particle.

Lemma 8.1. The following equations hold:

P H(x) =« fdk T
ko

$(x) =« fdk—l—e”""lﬁ*(k)
ko
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Proof. The result follows from

n

s =3 a f B e 7K (1)

j=o

=afdkkie‘”"" S £(Kan(f)
0 j=0

=a Ja’kie‘”""wn(k) N
ko
It is clear that
[@5P(0), ¢S] =[957(x), 57 (»)] =0
and hence
[6H(x), (M) =19 (x), (3] =0
Moreover, applying (5.5), on the small space we have

[657(x), 570 = Z f(x)f”“(y)[a (/) ax (£

= :;Oﬁ(x)f;*(y)l
Hence,

(6. $()] = [z , )f*(y)IJ
jdk ‘ —”""Jdk’—l—e"k"y[ i];(k)f;*(k')z]
ky kq j=0
] —ik - x /l ik -y ’
fdkko e jdk PRaRCL)

The calculation so far is rigorous, but now in a heuristic sense this last
expression is

Jdkie"" (x—9) zA“")(x -7
ko
which is the usual form found in the literature.
We next discuss the Poincaré covariance of the field operators. To give
a more relativistic notation, we identify a given ® e with the function
®(k) = ®’'(k) where k, = (m? + k?)/2, The proper, orthochronous Poincaré
group has a unitary representation U(b, A) on 3# given by

[U(b, A)®)k) = e™ *B(A~ k)
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We extend U(b, A) to #7 by defining U(b,A) =1 on #“° and for
Qe H#Om 1<m<n,

(U (b, Oy, . .., k) =5 PO(A Ky, ..., AT k,)

It is easy to verify that U,(b, A) is a unitary representation on #” and
hence U(b, A) =[U,(b, A)] is a unitary representation on I',(s#).

Lemma 8.2. For fe#, we have
U, (b, Na,(fIU,(b, A)* = a,[U(b, A)f]

Proof. Let ®e# D™, 1 <m < n, and apply the Lorentz invariance of
the measure to obtain

(Un(b, Ma, (YD), . . s k1)
=™ Y a,(YONA ki, AT )

=™t /m Jdk%j*(k)(b(k,A“k,,...,A"k,,,,l)
0

1 .
= Jm fdk o (AT )Y o™ b (A e, Ay, A e )
(1]

=(a,[Ub, Nf1U, (b, D)k, ... . kyn_\)
Hence,
U, (b, Na,(f) = a,[Ub, N)f1U,(b, A)
Multiply on the right by U,(b, A)* to obtain the result. W
Applying Lemma 8.2, we obtain the covariance condition
U, Na( /YU, A)* = a[U(b, N)f]

We also have the following covariance conditions to within an infinitesi-
mal.

Theorem 8.3. (a) U(b, AW(k)U(b, N)* ~ e~ by(Ak).
(b) U(b, Ay D (x)U(b, A)* = ¢ (Ax + b).

Proof. (a) Applying Lemma 8.2, we have
U (b, AW, () U, (b, A)* = ) f;(k)a,[U(b, A)fj]
Jj=0
An argument similar to the proof of Lemma 7.5 gives

Liof;ac)anw(b, A)f,)] <[ £ wo. npwa ,;,)]
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Since
U, N*=[Ub, )]~ '=U({b,A) ) =U(—-A"'b, A7)
we have -~
Ub, AW (k)U(b, A)* ~ Z (U(—A“b,/\")ﬁ)(k)a,.(fj-)}
L /=0
- _ioe-f“"ly;(/\k)an(j;)]

=| o—itk-b iofj(Ak)an(fj)jI

- eiAk . blﬁ(Ak)

{b) Applying the proof of Lemma 8.1, part (a), and the Loreniz
invariance of the measures gives

o [k e 0,6, AW 00, 6.1 |

— A 1

dkk_e—ik-xe—ik-A—lbwn(Ak):l
0

U(b, N " (x)U®b, A)*

i
R

2
R

-

=|a | dk ki e~k (”""b’ljz,,(Ak)]
0

- r
=1o dkzl_e—i/\k'(/\x-f-b)l//n(/\k):l
(

- 1
=] o dk_k__e—ik-(/\x+b)lpn(k)}

0

[pP(Ax + b)) =¢(Ax+5) B

We now define the self-adjoint operators ¢,(x) = ¢{H(x) + ¢{7)(x) on
H#". Then the field operator

$(x) =[4,(x)] = ¢ (®) + ¢ ()

is a bounded internal seif-adjoint operator on I' (). It follows from
Lemma 8.1 that

(=" Y, (k) + e Y ¥ (k)

6, (x) =a Jdkklo

and

o(x) =a Jdk klo (e~ Y(k) + ™ Y *(K))
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We define the conjugate operators

(%) = O Pn(x) = — it fdk (e ™" %, (k) — ™ Yk (Kk))

n(x) = [r,(x)] = — i Jdk (e =" (k) — ™ “Y*(k))

which are again self-adjoint. All the important operators can be expressed
in terms of ¢(x) and n(x).

Lemma 8.4. The following formulas hold:

Y(k) = ak, de d(x)e™ * + in de n(x)e

Y*(k) = ok, de P(x)e ~** —jy de (x)e ~% *

Proof. We can write ¢,(x) as follows:

o (x) =a fﬂ (e ~hoxoy, (k) ';; e Foxoy ¥ ( *k)>eik~x
0

Taking the Fourier transform gives

e~ ooy, (K) + e" 0%y *(—k) = 2uk, jdx P (x)e ~* >
Similarly,

T, (x) = —io fdk (e~ oo, (k) — e ooy b (—k))e™
and taking the Fourier transform gives

e ~Hovoyy (K) — e*o¥oys *(—K) = 2ia de m,(x)e % x
Adding these latter equations, we obtain

¥ ,(K) = aky fdx ¢, (x)e™ ~ + ju de m,(x)e™ *

The equation for (k) now follows and the equation for ¥ *(k) follows by
taking adjoints. W

Substituting the expressions for y(k) and ¢ *(k) in Lemma 8.4 into
(8.1) and (8.2) gives a representation of Q(P,) and N in terms of ¢(x) and
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7{x). For example, using straightforward methods, it can be shown that
QH) = % jdx [72(x) + Vo(x) - Vo(x) + m?¢p*(x)] + H,

where

H. = [ia Jdk ko fdx de’ e =N, (x), nn(-x/)]x=x(’):]

By the usual methods, the operator H, can be eliminated by rewriting
products in normal form.

We can also give a nonstandard treatment of charged scalar fields.
Suppose we have oppositely charged particles of spin zero and mass m. Let
the charges be +e and —e and call the first particles and the second
antiparticles. Let # = L%(R?, dk/k,) as before and define

H=H@H = D HYRHY
7 =0
In this case, the first Hilbert space corresponds to particles and the second
to antiparticles. We now form the nonstandard Fock space
I2(#) =T(#™": neN)

For fes# we let a(f) and a*(f) stand for a(f)®I and a*(f)®],
respectively, and define b(f) =I®a(f) and b*(f) =I®a*(f). We then
define (k) just as before in terms of the a’s and (k) analogously in terms
of the b’s. The particle number operators become

N, = fdk A
((]

N_= f dk - FRTR)
0

and the toral charge operator is defined to be the internal self-adjoint
operator

i ~ ~
Q=e(N,—-N_)=e Jdkk‘(!// *(Ky (k) — ¥ *(Ky(k)
0
If A4 is a self-adjoint operator on #, we can form the second

quantization operator (A4) on I'2(#) analogously to the way it was done
for I',(#). The energy-momentum operator then becomes

P,) = f dk ﬁ— WK + FHIFR)
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In the present context, the important field operators are

$00) =a [ g

6O =a f dk - (e
3

These, as well as their adjoints, satisfy the Klein—Gordon equation. The
field operator ¢(x) = ¢‘"(x) + ¢~(x) corresponds to the creation of a
charge ¢ localized at x, and ¢ *(x) corresponds to the annihilation of such
a charge.

This section has just begun the study of a nonstandard quantum field
theory. One can now proceed in a rigorous fashion to obtain other
standard field-theoretic results.
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